|Table of Contents|

Research on calculation method of micro-pile group based on Pasternak foundation model(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年06期
Page:
149-157
Research Field:
岩土工程
Publishing date:

Info

Title:
Research on calculation method of micro-pile group based on Pasternak foundation model
Author(s):
ZHENG Mingxin1 RUAN Yuhua12 HU Hongping3 NIE Hongzhi3
(1. State Key Laboratory of Safety Resilience of Civil Engineering in Mountain Area, East China Jiaotong University, Nanchang 330013, Jiangxi, China; 2. China Railway Xi'an Survey, Design and Research Institute Co. Ltd., Xi'an 710054, Shaanxi, China; 3. Nanchang Railway Survey and Design Institute Co., Ltd., Nanchang 330002, Jiangxi, China)
Keywords:
micro-pile group Pasternak foundation model shear stiffness analytical solution
PACS:
TU473
DOI:
10.19815/j.jace.2024.09047
Abstract:
In order to obtain more accurate calculation results of displacement and internal force for micro-pile groups, the shear stiffness G in Pasternak foundation model was introduced to consider the continuity of stress and deformation of the soil around piles. Combining the calculation theory of micro-pile groups and the distribution function of landslide thrust, the analytical solution of differential equation for the deflection of micro-pile bodies adapted to various forms of landslide thrust distribution was derived based on Pasternak foundation model. The accuracy of analytical solution was verified through numerical examples, and a split calculation was performed on micro-pile group using an engineering case. Finally, the influence of shear stiffness G on the calculation accuracy was studied. The results show that the analytical solution of the established micro-pile group calculation model based on Pasternak foundation model shows a similar trend in displacement variation to the finite element solution and experimental values, and the maximum displacement all appears at the pile top, indicating that the presented analytical solution is effective. Compared with the Winkler foundation model, the analytical solution calculation results for the front and rear rows of micro-piles based on Pasternak foundation model exhibit higher accuracy.

References:

[1] 张 力,赵振宇,刘力璇,等.基于现场试验与数值模拟的微型桩设计参数优化[J].北京交通大学学报,2019,43(4):52-57.
ZHANG Li, ZHAO Zhenyu, LIU Lixuan, et al. Design parameters optimization of micro-pile based on field test and numerical simulation[J]. Journal of Beijing Jiaotong University, 2019, 43(4): 52-57.
[2]张院生,雷云超,强小俊,等.多排微型桩框架结构加固边坡离心模型试验研究[J].岩土力学,2023,44(7):1983-1994.
ZHANG Yuansheng, LEI Yunchao, QIANG Xiaojun, et al. Centrifugal model test of slope reinforced by multi-row micro-pile frame structure[J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[3]周德培,王唤龙,孙宏伟.微型桩组合抗滑结构及其设计理论[J].岩石力学与工程学报,2009,28(7):1353-1362.
ZHOU Depei, WANG Huanlong, SUN Hongwei. Micro-pile composite structure and its design theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1353-1362.
[4]袁华智,陈明杰,赵 坤,等.斜坡条件下土压力对排桩基础水平承载特性影响[J].长安大学学报(自然科学版),2025,45(2):126-135.
YUAN Huazhi, CHEN Mingjie, ZHAO Kun, et al. Impact of soil pressure on horizontal load-bearing properties of row piles basis under slope conditions[J]. Journal of Chang'an University(Natural Science Edition), 2025, 45(2): 126-135.
[5]肖世国,鲜 飞,王唤龙.一种微型桩组合抗滑结构内力分析方法[J].岩土力学,2010,31(8):2553-2559,2564.
XIAO Shiguo, XIAN Fei, WANG Huanlong. Analytical method of internal forces of a combining micropiles structure[J]. Rock and Soil Mechanics, 2010, 31(8): 2553-2559, 2564.
[6]胡国平,郑明新,范亚坤,等.考虑桩土效应的微型桩组合抗滑结构计算方法[J].华中科技大学学报(自然科学版),2019,47(4):67-72.
HU Guoping, ZHENG Mingxin, FAN Yakun, et al. Calculation method of micro-pile composite anti-sliding structure based on pile-soil interaction[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(4): 67-72.
[7]张望喜,易伟建,陈友坤,等.双参数地基推力长桩的水平位移解析解[J].建筑科学与工程学报,2007,24(4):34-38.
ZHANG Wangxi, YI Weijian, CHEN Youkun, et al. Analytical solutions about horizontal displacement of laterally loaded long-piles under double-parameter foundation[J]. Journal of Architecture and Civil Engineering, 2007, 24(4): 34-38.
[8]梁发云,李彦初,黄茂松.基于Pasternak双参数地基模型水平桩简化分析方法[J].岩土工程学报,2013,35(增1):300-304.
LIANG Fayun, LI Yanchu, HUANG Maosong. Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 300-304.
[9]朱彦鹏,吴林平,施多邦,等.基于Pasternak地基模型的非线性土抗力-桩身侧向位移曲线在基坑支护桩中的应用[J].岩土力学,2022,43(9):2581-2591.
ZHU Yanpeng, WU Linping, SHI Duobang, et al. Application of nonlinear soil resistance-pile lateral displacement curve based on Pasternak foundation model in foundation pit retaining piles[J]. Rock and Soil Mechanics, 2022, 43(9): 2581-2591.
[10]吴泽雄,雷国平,张院生,等.多排微型抗滑桩极限抗滑力的数值模拟研究[J].建筑科学与工程学报,2024,41(6):171-181.
WU Zexiong, LEI Guoping, ZHANG Yuansheng, et al. Numerical study of ultimate anti-sliding force of multi-row micro anti-slide piles[J]. Journal of Architecture and Civil Engineering, 2024, 41(6): 171-181.
[11]孙 超,郭浩天.深基坑支护新技术现状及展望[J].建筑科学与工程学报,2018,35(3):104-117.
SUN Chao, GUO Haotian. Present situation and prospect of new technology for deep foundation pit support[J]. Journal of Architecture and Civil Engineering, 2018, 35(3): 104-117.
[12]庄一舟,程俊峰,李增锋,等.基于振动台试验的扩孔微型桩受力和变形性能研究[J].建筑科学与工程学报,2017,34(4):26-33.
ZHUANG Yizhou, CHENG Junfeng, LI Zengfeng, et al. Research on mechanical and deformation properties of micro-pile with predrilled oversize hole based on shaking table test[J]. Journal of Architecture and Civil Engineering, 2017, 34(4): 26-33.
[13]PASTERNAK P L. Fundamentals of a new method of analyzing structures on an elastic foundation by means of two foundation constants[M]. Moscow: Gosudarstvennoe Izdatelstro Liberaturi Po Stroitelstvui Arkhitekture, 1954.
[14]TANAHASHI H. Formulas for an infinitely long Bernoulli-Euler beam on the Pasternak model[J]. Soils and Foundations, 2004, 44(5): 109-118.
[15]俞 剑,张陈蓉,黄茂松.被动状态下地埋管线的地基模量[J].岩石力学与工程学报,2012,31(1):123-132.
YU Jian, ZHANG Chenrong, HUANG Maosong. Subgrade modulus of underground pipelines subjected to soil movements[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 123-132.
[16]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报,2002,21(4):517-521.
DAI Zihang. Study on distribution laws of landslide-thrust and resistance of sliding mass acting on antislide piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 517-521.
[17]MATOS FILHO R, MENDONÇA A V, PAIVA J B. Static boundary element analysis of piles submitted to horizontal and vertical loads[J]. Engineering Analysis with Boundary Elements, 2005, 29(3): 195-203.
[18]KERISEL J, ADAM M. Calculation method for horizontal forces acting on deep foundations in clay soils[J]. Annals of Building and Public Works, 1967, 239(20): 1653-1694.
[19]王唤龙.微型桩组合抗滑结构受力机理与防腐性研究[D].成都:西南交通大学,2011.
WANG Huanlong. Research on stress mechanism and anti-corrosion of micropile composite anti-slide structure[D]. Chengdu: Southwest Jiaotong University, 2011.

Memo

Memo:
-
Last Update: 2025-11-25