|Table of Contents|

Parametric Analysis of Frames with Two-level-yielding Buckling Restrained Braces Under Frequent Earthquake(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2019年06期
Page:
88-94
Research Field:
Publishing date:

Info

Title:
Parametric Analysis of Frames with Two-level-yielding Buckling Restrained Braces Under Frequent Earthquake
Author(s):
SUN Ying-zhi1 LI Guo-qiang12 SUN Fei-fei12
(1. College of Civil Engineering, Tongji University, Shanghai 200092, China;2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)
Keywords:
disaster prevention and mitigation parametric analysis metal tube damper buckling restrained brace
PACS:
TU973.2
DOI:
-
Abstract:
In order to overcome the deficiency that the conventional buckling restrained braces(BRBs)were in elastic state under frequent earthquakes, and cannot dissipate energy, a novel two-level-yielding buckling restrained brace composed of conventional BRB and metal tube damper was developed, and its reliably and stable hysteretic characteristics under both frequent and large earthquakes were verified by experiments. Under frequent earthquakes, the metal tube damper yields to dissipate energy and the buckling restrained core plate keeps elastic. A series of braced frame models with the novel braces were established by means of the finite element software ETABS. By changing the stiffness ratios of braces and frames, the axial stiffness relationship of tube dampers and core plates, and the yield ratios of tube dampers, the dynamic elastoplastic analysis under frequent earthquakes of each model was carried out, while the base shear forces and the maximum inter-story drift angles were compared with the analysis results of corresponding BRB frames. The results show that when the axial elastic stiffness ratio of the novel two-level-yielding buckling restrained brace and core plate is about 2, and the yield ratio of tube damper is about 0.3, the structure can achieve better seismic reduction effect. The parameter change of the two-level-yielding buckling restrained brace for the influence tendency of reducing structural seismic response does not vary with the different stiffness ratios of braces and frames. For braced frames with large brace stiffness, compared with the conventional BRB, the inter-story drift angles of the structure can be reduced by setting the two-level-yielding buckling restrained brace. If the base shear force is to be reduced at the same time, the yield ratio of damper should not be higher than 0.3.

References:

[1] 白雪霜.现有钢筋混凝土框架结构抗震鉴定方法试验研究[D].北京:中国建筑科学研究院,2012.
BAI Xue-shuang.Experimental Research on Seismic Appraisal Method of Existing Reinforced Concrete Frame Structures[D].Beijing:China Academy of Building Research,2012.
[2]胡鞍钢.汶川地震灾害评估及灾区重建分析报告[J].建材发展导向,2008,6(3):8-12.
HU An-gang.Wenchuan Earthquake Disaster Assessment and Reconstruction Analysis Report[J].Development Guide to Building Materials,2008,6(3):8-12.
[3]KIMURA K,YOSHIOKA K,TAKEDA T,et al.Tests on Braces Encased by Mortar In-filled Steel Tubes[C]//AIJ.Summaries of Technical Papers of 1980 Annual Meeting of the Architectural Institute of Japan.Tokyo:AIJ,1976:1041-1042.
[4]MOCHIZUKI N,MURATA Y,ANDOU N,et al.An Experimental Study on Buckling of Unbonded Braces Under Centrally Applied Loads[C]//AIJ.Summaries of Technical Papers of 1988 Annual Meeting of the Architectural Institute of Japan.Tokyo:AIJ,1988:237-250.
[5]FUJIMOTO M,WADA A,SAEKI E,et al.A Study on the Unbonded Brace Encased in Buckling Restraining Concrete and Steel Tube[J].Journal of Structural and Construction Engineering,1988,34B:249-258.
[6]WATANABE A,HITOMOI Y,SAEKI E,et al.Properties of Brace Encased in Buckling-restraining Concrete and Steel Tube[C]//Japan Association for Earthquake Disaster Prevention.Proceedings of 9th World Conference on Earthquake Engineering.Tokyo:Japan Assotiation for Earthquake Disaster Prevention,1988:719-724.
[7]CLARK P,AIKEN I,KASAI K,et al.Design Procedures for Buildings Incorporating Hysteretic Damping Devices[C]//SEAOC.Proceedings of the 69th Annual Convention of SEAOC.Sacramento:SEAOC,1999:105-122.
[8]蔡克铨,黄彦智,翁崇兴.双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J].建筑钢结构进展,2005,7(3):1-8.
TSAI Keh-chyuan,HWANG Yean-chih,WENG Chung-shing.Seismic Performance and Applications of Double Tube Buckling-restrained Braces[J].Progress in Steel Building Structures,2005,7(3):1-8.
[9]罗树青,邓长根,牛化宪.抑制屈曲支撑的稳定研究[J].华东船舶工业学院学报:自然科学版,2005,19(3):28-32.
LUO Shu-qing,DENG Chang-gen,NIU Hua-xian.Study on Stability of Buckling Restrained Brace[J].Journal of East China Shipbuilding Institute:Natural Science Edition,2005,19(3):28-32.
[10]李 妍,吴 斌,王倩颖,等.防屈曲钢支撑阻尼器的试验研究[J].土木工程学报,2006,39(7):9-14.
LI Yan,WU Bin,WANG Qian-ying,et al.An Experimental Study of Anti-buckling Steel Damping-braces[J].China Civil Engineering Journal,2006,39(7):9-14.
[11] LI G Q,SUN F F,CHEN S W,et al.Development of TJ-type Buckling-restrained Braces and Application[C]//LIANG W H,LI Q,GAO B.Proceedings of International Conference on Earthquake Engineering — The 1st Anniversary of Wenchuan Earthquake.Chengdu:Southwest Jiaotong University Press,2009:149-157.
[12]孙飞飞,刘 猛,李国强,等.国产TJ-Ⅰ型屈曲约束支撑的性能研究[J].河北工程大学学报:自然科学版,2009,26(1):5-9.
SUN Fei-fei,LIU Meng,LI Guo-qiang,et al.Improvement and Experimental Study of Domestic TJ-Ⅰ Type Buckling-restrained Brace[J].Journal of Hebei University of Engineering:Natural Science Edition,2009,26(1):5-9.
[13]郭彦林,江磊鑫.型钢组合装配式防屈曲支撑性能及设计方法研究[J].建筑结构,2010,40(1):30-37.
GUO Yan-lin,JIANG Lei-xin.Behavior and Application of Buckling-restrained Braces Assembled with Section Steels[J].Building Structure,2010,40(1):30-37.
[14]郭彦林,江磊鑫.双矩管带肋约束型装配式防屈曲支撑的设计方法[J].建筑科学与工程学报,2010,27(2):67-74.
GUO Yan-lin,JIANG Lei-xin.Design Method of Buckling-restrained Braces Assembled with Dual Ribbed Rectangular Hollow[J].Journal of Architecture and Civil Engineering,2010,27(2):67-74.
[15]周 云,尹绕章,张文鑫,等.钢板装配式屈曲约束支撑性能试验研究[J].建筑结构学报,2014,35(8):37-43.
ZHOU Yun,YIN Rao-zhang,ZHANG Wen-xin,et al.Experimental Study on Hysteretic Performance of Steel-plate Assembled Buckling-restrained Brace[J].Journal of Building Structures,2014,35(8):37-43.
[16]LI G Q,SUN Y Z,JI C,et al.Experimental Study on Two-level Yielding Buckling-restrained Braces[J].Journal of Constructional Steel Research,2019,159:260-269.
[17]GB 50011—2010,建筑抗震设计规范[S].
GB 50011—2010,Code for Seismic Design of Buildings[S].

Memo

Memo:
-
Last Update: 2019-11-26