|Table of Contents|

Flexural Behavior of FRP-reinforced ECC Beam(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2020年06期
Page:
46-54
Research Field:
Publishing date:

Info

Title:
Flexural Behavior of FRP-reinforced ECC Beam
Author(s):
ZHOU Jia-jia1 YAO Shao-ke2 JING Chuan3 ZHAO Jun1 ZHANG Li-juan1
1. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China; 2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3. State Grid Henan Economic Research Institute, Zhengzhou 450052, Henan, China
Keywords:
FRP-reinforced ECC beam flexural behavior theoretical analysis numerical calculation
PACS:
TU311
DOI:
-
Abstract:
In order to investigate the flexural behavior of fiber reinforced polymer(FRP)-reinforced engineered cementitious composites beam(FRP-reinforced ECC beam), the theoretical analysis and numerical calculation of the whole normal-section bending process were carried out. Firstly, based on the plane section assumption and the constitutive model of materials, the stress distribution of FRP-reinforced ECC beam during the whole bending process was obtained, and the formula for calculating normal-section flexural capacity was derived at each loading stage. The whole bending process of FRP-reinforced ECC beam was analyzed by numerical calculation with MATLAB. The correctness of the model was verified by comparing the calculated load-deflection curves with the existing test results. Then, based on the proposed theoretical model, the influence of ECC compressive strength and FRP reinforcement ratio on the flexural performance of the beam was analyzed. Finally, based on the proposed ductility coefficient calculation formula of FRP-reinforced ECC beam, the influence of FRP reinforcement ratio and ECC compressive strength on the ductility of beam was analyzed, and it was pointed out that the ductility change of FRP-reinforced ECC beam was closely related to the failure mode of beams. The results show that the change of ECC compressive strength and FPR reinforcement ratio can change the failure mode of the beam, but the influence of FRP reinforcement ratio is greater. ECC compressive strength has great influence on the initial crack load and ultimate bearing capacity of the beam. The reinforcement ratio can significantly improve the short-term stiffness and ultimate bearing capacity of the beam, but has little effect on the initial crack load of the beam.

References:

[1] 刘 翠.FRP筋力学性能及预应力FRP混凝土梁受弯承载力研究[D].武汉:华中科技大学,2012. LIU Cui.Study on the Performance of FRP Tendons and Flexural Behavior for Prestressed Concrete Beams with CFRP[D].Wuhan:Huazhong University of Science and Technology,2012.
[2]DENVID L,HOAT J P.Experimental Study of Hybrid FRP Reinforced Concrete Beams[J].Engineering Structures,2010,32(12):3857-3865.
[3]欧进萍,王 勃,何 政.CFRP加筋混凝土梁的力学性能试验与分析[J].土木工程学报,2005,38(12):8-12,31. OU Jin-ping,WANG Bo,HE Zheng.Mechanical Behavior of Concrete Beams Reinforced with CFRP Bars[J].China Civil Engineering Journal,2005,38(12):8-12,31.
[4]朱 虹,董志强,吴 刚,等.FRP 筋混凝土梁的刚度试验研究和理论计算[J].土木工程学报,2015,48(11):44-53. ZHU Hong,DONG Zhi-qiang,WU Gang,et al.Experimental Study and Theoretical Calculation on the Flexural Stiffness of Concrete Beams Reinforced with FRP Bars[J].China Civil Engineering Journal,2015,48(11):44-53.
[5]ABDALLA H A.Evaluation of Deflection in Concrete Members Reinforced with Fibre Reinforced Polymer(FRP)Bars[J].Composite Structures,2002,56(1):63-71.
[6]LI V C.On Engineered Cementitious Composites(ECC)[J].Journal of Advanced Concrete Technology,2003,1(3):215-230.
[7]LI V C,MISHRA D K,WU H C.Matrix Design for Pseudo-strain-hardening Fiber Reinforced Cementitious Composites[J].Materials and Structures,1995,28:586-595.
[8]FISCHER G,LI V C.Deformation Behavior of Fiber-reinforced Polymer Reinforced Engineered Cementitious Composite(ECC)Flexural Members Under Reversed Cyclic Loading Conditions[J].ACI Structural Journal,2003,100(1):25-35.
[9]HUAN Y J,WEI W J,JIN Y.Experimental Study on FRP-reinforced PP ECC Beams Under Reverse Cyclic Loading[J].Mechanics of Composite Materials,2014,50(4):447-456.
[10]LI V C,WANG S,WU C.Tensile Strain-hardening Behavior of Polyvinyl Alcohol Engineered Cementitious Composite(PVA-ECC)[J].ACI Materials Journal,2001,98(6):483-492.
[11]LI H D,XU S L,LEUNG C K Y.Tensile and Flexural Properties of Ultra High Toughness Cementitious Composite[J].Journal of Wuhan University of Technology:Materials Science Edition,2009,24(4):677-683.
[12]PAEGLE I,FISCHER G.Phenomenological Interpretation of the Shear Behavior of Reinforced Engineered Cementitious Composite Beams[J].Cement and Concrete Composites,2016,73:213-225.
[13]LI V C,WANG S X.Flexural Behaviors of Glass Fiber-reinforced Polymer(GFRP)Reinforced Engineered Cementitious Composite Beams[J].ACI Materials Journal,2002,99(1):11-21.
[14]YUAN F,PAN J L,LEUNG C K Y.Flexural Behaviors of ECC and Concrete/ECC Composite Beams Reinforced with Basalt Fiber-reinforced Polymer[J].Journal of Composites for Construction,2013,17(5):591-602.
[15]何佶轩.FRP增强ECC梁及ECC/混凝土组合梁抗剪性能研究[D].南京:东南大学,2016. HE Ji-xuan.Study on Shear Behaviors of FRP Reinforced ECC Beam and ECC/Concrete Composite Beam[D].Nanjing:Southeast University,2016.
[16]王必元.ECC力学性能及其增强钢筋/FRP筋-混凝土复合梁受弯性能研究[D].扬州:扬州大学,2016. WANG Bi-yuan.Study on ECC Mechanical Properties and Bending Performance of Concrete Composite Beams Reinforced with Steel Bars or FRP Bars[D].Yangzhou:Yangzhou University,2016.
[17]CAI J M,PAN J L,ZHOU X M.Flexural Behavior of Basalt FRP Reinforced ECC and Concrete Beams[J].Construction and Building Materials,2017,142:423-430.
[18]ZHOU J J,PAN J L,LEUNG C K Y.Mechanical Behavior of Fiber-reinforced Engineered Cementitious Composites in Uniaxial Compression[J].Journal of Materials in Civil Engineering,2015,27(1):04014111.

Memo

Memo:
-
Last Update: 1900-01-01