|本期目录/Table of Contents|

[1]黄会荣,郝际平,黄义.圆底球面厚扁壳的位移型控制方程及一般解[J].建筑科学与工程学报,2007,24(03):36-42.
 HUANG Hui-rong,HAO Ji-ping,HUANG Yi.Displacement Governing Equations and General Solution of Circular Spherical Thick Shallow Shells[J].Journal of Architecture and Civil Engineering,2007,24(03):36-42.
点击复制

圆底球面厚扁壳的位移型控制方程及一般解(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
24卷
期数:
2007年03期
页码:
36-42
栏目:
出版日期:
2007-09-20

文章信息/Info

Title:
Displacement Governing Equations and General Solution of Circular Spherical Thick Shallow Shells
作者:
黄会荣1,郝际平2,黄义3
1. 西安建筑科技大学 机电工程学院,陕西 西安 710055; 2. 西安建筑科技大学 土木工程学院, 陕西 西安 710055; 3. 西安建筑科技大学 理学院,陕西 西安 710055
Author(s):
HUANG Hui-rong1, HAO Ji-ping2, HUANG Yi3
1. School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China; 2. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China; 3. School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
关键词:
厚扁球壳 圆底球面厚扁壳 位移函数 位移型基本方程 控制方程
Keywords:
thick shallow spherical shell circular spherical thick shallow shell displacement function displacement fundamental equation governing equation
分类号:
TU33
DOI:
-
文献标志码:
A
摘要:
基于考虑横向剪切变形的厚壳位移型基本方程及扁壳基本假定,建立了以5个中面位移为5个独立变量的厚扁壳位移型基本方程,并由此得到厚扁球壳在正交曲线坐标及极坐标下的位移型基本方程。为了求解圆底球面厚扁壳在极坐标下的位移型基本方程,通过引入4个辅助位移函数,建立其解耦的控制微分方程,最后通过这4个辅助位移函数求出5个位移分量。结果表明,厚扁壳的位移型基本方程退化为厚扁球壳及薄扁球壳的位移型方程是正确的,且所推导方程具有一般性。
Abstract:
The displacement fundamental equations of the thick shallow shells concerning five independent variables, ie five middle surface displacements were established based on the displacement fundamental equations of the thick shells by transverse shearing deformation and basic hypothesis on shallow shells, displacement fundamental equations of thick shallow spherical shells in orthogonal curvilinear coordinates and in polar coordinates were obtained. Authors introduced four assistant displacement functions to solve displacement fundamental equations of circular spherical thick shallow shells, which were tenth-order differential equations with variable coefficient and set up the decoupled governing differential equations, then obtained five displacement components through four assistant displacement functions. The results show that the displacements of equations of thick shallow shells degenerate to the displacement equations of the thick shallow spherical shells and thin shallow spherical shells, which demonstrate the generality of derived equations.

参考文献/References:

[1] 曹志远.板壳振动理论[M].北京:中国铁道出版社,1989. CAO Zhi-yuan.Theory of Plates and Shells Vibration[M].Beijing:China Railway Publishing House,1989.
[2]黄克智.弹性薄壳理论[M].北京:科学出版社,1988. HUANG Ke-zhi.Elastic Thin-shell Theory[M].Beijing:Science Press,1988.
[3]诺沃日洛夫V V.薄壳理论[M].北京石油学院材料力学教研组,译.北京:科学出版社,1959. NOVOZHILOV V V.Thin Shell Theory[M].Translated by Material Mechanic Teaching and Research Group of Beijing Institute of Petroleum.Beijing:Science Press,1959.
[4]何福保,沈亚鹏.板壳理论[M].西安:西安交通大学出版社,1993. HE Fu-bao,SHEN Ya-peng.Theory of Plates and Shells[M].Xi'an:Xi'an Jiaotong University Press,1993.
[5]CLIVE L D.Introduction to the Theory of Shells[M].New York:Pergamon Press,1974.
[6]黄会荣,郝际平.考虑弯曲内力轴对称旋转壳的非线性协调方程[J].西北大学学报:自然科学版,1999,29(5):377-380. HUANG Hui-rong,HAO Ji-ping.The Nonlinear Coordinate Equations of Rotation Shell with Rotational Symmetry by Considering Bending Internal Forces[J].Journal of Northwest University:Natural Science Edition,1999,29(5):377-380.
[7]黄会荣,李 革.轴对称旋转薄壳的非线性控制方程[J].西安建筑科技大学学报:自然科学版,2000,32(2):192-195. HUANG Hui-rong,LI Ge.Nonlinear Governing Equations of the Rotational Thin Shell with Axial Symmetry[J].Journal of Xi'an University of Architecture and Technology:Natural Science Edition,2000,32(2):192-195.
[8]黄会荣,黄 义.基于精确本构关系中厚壳振动的位移型基本方程[J].西北大学学报:自然科学版,2002,32(5):20-24. HUANG Hui-rong,HUANG Yi.Displacemental Fundamental Equations of the Shells Vibration by Transvers Shearing Defomation[J].Journal of Northwest University:Natural Science Edition,2002,32(5):20-24.
[9]黄会荣,黄 义.考虑横向剪切变形厚球壳的位移型动力方程[J].西安建筑科技大学学报:自然科学版,2002,34(2):170-175. HUANG Hui-rong,HUANG Yi.Displacemental Dynamical Equations of the Spherical Shells by Transverse Shearing Deformation[J].Journal of Xi'an University of Architecture and Technology:Natural Science Edition,2002,34(2):170-175.
[10]黄会荣,黄 义.考虑横向剪切变形厚旋转壳振动的位移型基本方程[J].空间结构,2003,10(1):3-7. HUANG Hui-rong,HUANG Yi.Displacemental Vibration Equations of Thick Shells of Revolution Considering Transverse Shear Deformation[J].Spatial Structures,2003,10(1):3-7.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2007-06-23
基金项目:国家自然科学基金项目(59978038)
作者简介:黄会荣(1963-),女,陕西西安人,副教授,工学博士研究生,E-mail:610113jiejie@163.com。
更新日期/Last Update: 2007-09-20