|本期目录/Table of Contents|

[1]郑毅敏,张盼盼,赵昕.基于温度变化的超高层混合结构构件变形及受力分析[J].建筑科学与工程学报,2010,27(04):78-85.
 ZHENG Yi-min,ZHANG Pan-pan,ZHAO Xin.Analysis of Member Shortening and Forces of Super Tall Composite Building Based on Temperature Change[J].Journal of Architecture and Civil Engineering,2010,27(04):78-85.
点击复制

基于温度变化的超高层混合结构构件变形及受力分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
27卷
期数:
2010年04期
页码:
78-85
栏目:
出版日期:
2010-12-20

文章信息/Info

Title:
Analysis of Member Shortening and Forces of Super Tall Composite Building Based on Temperature Change
作者:
郑毅敏1,张盼盼2,赵昕1
1. 同济大学建筑设计研究院(集团)有限公司,上海 200092; 2. 同济大学 建筑工程系,上海 200092
Author(s):
ZHENG Yi-min1, ZHANG Pan-pan2, ZHAO Xin1
1. Architectural Design & Research Institute of TongjiUniversity(Group)Co., Ltd., Shanghai 200092, China; 2. Department of Building Engineering, Tongji University, Shanghai 200092, China
关键词:
温度预测 极端温度 超高层混合结构 竖向变形 伸臂内力
Keywords:
temperature prediction extreme temperature super tall composite building vertical shortening out-trigger internal force
分类号:
TU375.3
DOI:
-
文献标志码:
A
摘要:
考虑太阳总辐射、温室气体中CO2对气候的影响,通过研究全球变暖与辐射强迫之间的定量关系,建立一个线性关系模型,并以此为基础对未来近100年的上海地区极端最高温度和极端最低温度变化进行预测,分析结构在温度作用下的最不利工况,得出结构的最不利正温差和最不利负温差; 基于变化温度方法和一般温度方法,采用MIDAS软件对超高层建筑在温差作用下施工阶段和正常使用阶段巨柱和核心筒的温度变形及两者之间的差异变形进行分析; 考虑气温变化对结构典型构件轴力及伸臂的影响。研究结果表明:上海地区极端最高温度和极端最低温度呈上升趋势,到2110年,上海地区极端最高温度将上升3 ℃; 2种方法计算的巨柱和核心筒的竖向变形、差异变形及底部楼层和中部楼层轴力相差很大; 伸臂层轴力发生突变,温差作用引起的伸臂内力高达最不利荷载组合的63%。
Abstract:
The effect of solar irradiance and greenhouse gas on the climate was considered. A linear relation model was established by examining the quantitative relations between global warming and radiative forcing. Based on it, the predictions of the extreme highest temperature and extreme lowest temperature in Shanghai were carried out in the next one hundred years. The most adverse cases of positive and negative temperature difference were obtained by analyzing all kinds of the most adverse temperature effect. Based on the temperature change method and normal method, MIDAS software was adopted to analyze the vertical shortening and differential shortening of typical members of super tall composite building caused by temperature differences under the construction stage and the serviceability stage, as well as the effect to the out-trigger and the axial force of typically vertical members was studied. Study results show that the extreme highest temperature and extreme lowest temperature in Shanghai rise frequently, and the extreme highest temperature in Shanghai will rise by 3 ℃ in 2110. There will be considerably differences in the vertical shortening and the differential shortening between the huge column and the core-wall, and the axial force of the bottom and the middle floors under the two different temperature methods. Sharp change occurs in the out-trigger floors. The out-trigger internal force caused by temperature difference achieves 63% of the most adverse load combination.

参考文献/References:

[1] SMITH B S,COULL A.Tall Building Structures:Analysis and Design[M].New York:John Wiley & Sons,1991.
[2]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991. LIU Xing-fa.Temperature Stress Analysis of Concrete Structures[M].Beijing:China Communications Press,1991.
[3]傅学怡.高层建筑竖向温差内力简化计算[J].建筑结构学报,1993,14(1):35-43. FU Xue-yi.Simplified Calculation of Restraint Force Caused by Vertical Temperature Variation in Highrise Building Structures[J].Journal of Building Structures,1993,14(1):35-43.
[4]赵海东,赵 鸣,沈水明.超长钢筋混凝土结构的温度响应[J].四川建筑科学研究,2000,26(4):7-10. ZHAO Hai-dong,ZHAO Ming,SHEN Shui-ming.Temperature Response of Super-length Concrete Structure[J].Building Science Research of Sichuan,2000,26(4):7-10.
[5]侯晓英.超长高层钢管混凝土结构温度作用分析[D].郑州:郑州大学,2002. HOU Xiao-ying.Temperature Analysis of Super-length High-rise Concrete-filled Steel Tube Structure[D].Zhengzhou:Zhengzhou University,2002.
[6]樊小卿.温度作用与结构设计[J].建筑结构学报,1999,20(2):43-50. FAN Xiao-qing.Temperature Action and Structural Design[J].Journal of Building Structures,1999,20(2):43-50.
[7]IPCC.Climate Change 2001:the Scientific Basis,Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2001.
[8]李华斌.全球变暖定量分析及未来全球平均气温变化预测[D].杭州:浙江大学,2007. LI Hua-bin.Quantitative Analysis of Global Warming and Prediction of Global Mean Temperature Change in the Future[D].Hangzhou:Zhejiang University,2007.
[9]HANSEN J,SATO M,RUEDY R,et al.Global Warm-ing in the Twenty-first Century:an Alternative Scen-ario[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97(19):9875-9880.
[10]HANSEN J,SATO M.Trends of Measured Climate Forcing Agents[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(26):14778-14783.
[11]HANSEN J,SATO M.Greenhouse Gas Growth Rates[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(46):16109-16114.
[12]HANSEN J,SATO M,LACIS A,et al.Climate Forcings in the Industrial Era[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(22):12753-12758.
[13]GB 50009—2001,建筑结构荷载规范[S]. GB 50009—2001,Load Code for Design of Building Structures[S].
[14]ACI 318-02,Building Code Requirements for Structural Concrete(ACI 318-02)and Commentary[S].

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2010-09-06
基金项目:上海市科技攻关计划项目(09dz1207704)
作者简介:郑毅敏(1957-),男,浙江镇海人,教授级高级工程师,工学硕士,E-mail:22zym@tjadri.com。
更新日期/Last Update: 2010-12-20