|本期目录/Table of Contents|

[1]窦超,郭彦林.单轴对称截面圆弧拱弹性弯扭屈曲临界荷载[J].建筑科学与工程学报,2011,28(04):69-74,85.
 DOU Chao,GUO Yan-lin.Elastic Flexural-torsional Buckling Load of Monosymmetric Circular Arches[J].Journal of Architecture and Civil Engineering,2011,28(04):69-74,85.
点击复制

单轴对称截面圆弧拱弹性弯扭屈曲临界荷载(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
28卷
期数:
2011年04期
页码:
69-74,85
栏目:
出版日期:
2011-12-20

文章信息/Info

Title:
Elastic Flexural-torsional Buckling Load of Monosymmetric Circular Arches
作者:
窦超,郭彦林
清华大学 土木工程系,北京 100084
Author(s):
DOU Chao, GUO Yan-lin
Department of Civil Engineering, Tsinghua University, Beijing 100084, China
关键词:
钢拱 弯扭屈曲 平衡法 屈曲临界荷载 荷载作用位置 圆弧拱
Keywords:
steel arch flexural-torsional buckling equilibrium method buckling load loading position circular arch
分类号:
TU32
DOI:
-
文献标志码:
A
摘要:
为了研究均布径向压力作用下的单轴对称截面均匀受压圆弧拱的弹性弯扭屈曲临界荷载,为一般荷载作用下压弯钢拱的稳定承载力设计奠定基础,采用平衡法推导得到了均匀受压圆弧拱的面外屈曲临界荷载的理论解。在微元段受力平衡的基础上,建立了任意轴线形状、截面形式的曲线构件的平衡方程,代入截面变形条件、内力与变形条件推导出了单轴对称截面均匀受压两端铰支圆弧拱的屈曲方程,求解得到了保向分布力作用下的弯扭屈曲临界荷载。采用ANSYS有限元数值方法进行了分析比较,研究了截面不对称性、荷载作用位置对弹性弯扭屈曲临界荷载的影响。结果表明:所提出的平衡法推导过程概念清晰明确,所得解析解与有限元数值解吻合较好,具有较高的精度。
Abstract:
To study the elastic flexural-torsional buckling load of monosymmetric circular arches under uniform radial pressure which can be used in the design of stable bearing capacity of steel arches under both compression and bending, the theoretical solution for out-of-plane buckling loads of monosymmetric circular arches under uniform compression was obtained by using equilibrium method. Based on the force equilibrium of curve infinitesimal, equilibrium equations for curved members with any axial form and section form were established. Combined with sectional deformation equations, relations between inner forces and deformation, the buckling equations of two-hinged monosymmetric circular arches under uniform compression and flexural-torsional buckling loads under distribution forces were derived and obtained. ANSYS finite element numerical method was adopted for analysis and comparison, and the influence of sectional asymmetry and loading position on elastic flexural-torsional buckling load was investigated. The results show that the the derivation procedure used in the paper is clear and definite, and the obtained analytical solution of buckling load is coincided well with the finite element numerical answer, and it has a high accuracy.

参考文献/References:

[1] TIMOSHENKO S P,GERE J M.Theory of Elastic Stability[M].2nd ed.New York:McGraw-Hill,1961.
[2]YOO C H.Flexural-torsional Stability of Curved Beams[J].Journal of the Engineering Mechanics Division,1982,108(6):1351-1369.
[3]TRAHAIR N S,PAPANGELIS J P.Flexural-torsional Buckling of Monosymmetric Arches[J].Journal of Structural Engineering,1987,113(10):2271-2288.
[4]PI Y L,BRADFORD M A,TRAHAIR N S,et al.A Further Study of Flexural-torsional Buckling of Elastic Arches[J].International Journal of Structural Stability and Dynamics,2005,5(2):163-183.
[5]BRADFORD M A,PI Y L.Flexural-torsional Buckling of Fixed Steel Arches Under Uniform Bending[J].Journal of Constructional Steel Research,2006,62(1/2):20-26.
[6]PI Y L,BRADFORD M A,TIN-LOI F.Flexural-torsional Buckling of Shallow Arches with Open Thin-walled Section Under Uniform Radial Loads[J].Thin-walled Structures,2007,45(3):352-362.
[7]BRADFORD M A,PI Y L.Elastic Flexural-torsional Instability of Structural Arches Under Hydrostatic Pressure[J].International Journal of Mechanical Sciences,2008,50(2):143-151.
[8]PI Y L,BRADFORD M A.Elastic Flexural-torsional Buckling of Fixed Arches[J].The Quartly Journal of Mechanics and Applied Mathematics,2004,57(4):551-569
[9]PI Y L,BRADFORD M A,TIN-LOI F.Nonlinear Analysis and Buckling of Elastically Supported Circular Shallow Arches[J].International Journal of Solids and Structures,2007,44(7/8):2401-2425.
[10]许 强,童根树.单轴对称工字形截面圆弧拱的屈曲分析[J].建筑结构学报,2001,22(3):64-69. XU Qiang,TONG Gen-shu.Buckling of Mono-symmetric I-section Circular Arches[J].Journal of Building Structures,2001,22(3):64-69.
[11]杨永华,陈以一.双轴对称固支圆弧拱弯扭屈曲荷载的理论解[J].工程力学,2008,25(4):1-4. YANG Yong-hua,CHEN Yi-yi.Theoretical Solution for Flexural-torsional Buckling Load of Fixed-end Circular Arches with Biaxially-symmetric Cross-sections[J].Engineering Structure,2008,25(4):1-4.
[12]窦 超.钢拱平面外稳定性能及设计方法研究[D].北京:清华大学,2011. DOU Chao.Out-of-plane Stability and Design of Steel Arches[D].Beijing:Tsinghua University,2011.
[13]陈 骥.钢结构稳定理论与设计[M].北京:科学出版社,2008. CHEN Ji.Stability of Steel Structures,Theory and Design[M].Beijing:Science Press,2008.
[14]郭彦林,江磊鑫.双矩管带肋约束型装配式防屈曲支撑的设计方法[J].建筑科学与工程学报,2010,27(2):67-74. GUO Yan-lin,JIANG Lei-xin.Design Method of Buckling-restrained Braces Assembled with Dual Ribbed Rectangular Hollow[J].Journal of Architecture and Civil Engineering,2010,27(2):67-74.
[15]郭彦林,周 明.钢板剪力墙的分类及性能[J].建筑科学与工程学报,2009,26(3):1-13. GUO Yan-lin,ZHOU Ming.Categorization and Performance of Steel Plate Shear Wall[J].Journal of Architecture and Civil Engineering,2009,26(3):1-13.
[16]PAPANGELIS J P,TRAHAIR N S.Flexural-torsional Buckling Tests on Arches[J].Journal of Structural Engineering,1987,113(7):1433-1443.
[17]杨永华.弹性开口薄壁圆弧钢拱的稳定承载力研究[D].上海:同济大学,2006. YANG Yong-hua.Research on Stability Capacity of Elastic Open Thin-walled Circular Steel Arch[D].Shanghai:Tongji University,2006.
[18]刘 磊,许克宾.曲杆结构非线性分析中的直梁单元和曲梁单元[J].铁道学报,2001,23(6):72-76. LIU Lei,XU Ke-bin.Curved-beam Element and Straight-beam Element Used in the Nonlinear Analysis of Curved Frame Structures[J].Journal of the China Railway Society,2001,23(6):72-76.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2011-10-28
基金项目:国家自然科学基金项目(50478013)
作者简介:窦 超(1984-),男,陕西咸阳人,工学博士研究生,E-mail:douc06@mails.thu.edu.cn。
更新日期/Last Update: 2011-12-20