|本期目录/Table of Contents|

[1]张永利,李杰.东海大桥海上风电场海床稳定性评价[J].建筑科学与工程学报,2012,29(01):50-55.
 ZHANG Yong-li,LI Jie.Evaluation of Seabed Stability of Offshore Wind Farm for Donghai Bridge[J].Journal of Architecture and Civil Engineering,2012,29(01):50-55.
点击复制

东海大桥海上风电场海床稳定性评价(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
29卷
期数:
2012年01期
页码:
50-55
栏目:
出版日期:
2012-03-30

文章信息/Info

Title:
Evaluation of Seabed Stability of Offshore Wind Farm for Donghai Bridge
作者:
张永利1,2,李杰2
1. 国电联合动力技术有限公司,上海 200062; 2. 同济大学 建筑工程系,上海 200092
Author(s):
ZHANG Yong-li, LI Jie
1. Guodian United Power Technology Co., Ltd, Shanghai 200062, China; 2. Department of Building Engineering, Tongji University, Shanghai 200092, China
关键词:
海上风电场 海床稳定性 Biot固结理论 解析法 数值方法 土体
Keywords:
offshore wind farm seabed stability Biot consolidation theory analytical method numerical method soil
分类号:
TU311.2
DOI:
-
文献标志码:
A
摘要:
将基于总应力法的波致土体剪切破坏准则与基于有效应力法的液化准则相结合,对东海大桥海上风电场海床稳定性进行了分析,讨论了平均波高、百年一遇波高及破碎波高3种波况下,场地土体有效正应力、振荡正应力及应力角等值线的变化情况,得到了波高对海床稳定性的影响。结果表明:该方法可为海上风电场的选址及基础设计提供参考。
Abstract:
According to the wave-induced soil shear failure criterion based on the total stress method and the liquefaction criterion based on the effective stress method, authors analyzed the seabed stability of offshore wind farm for Donghai Bridge, and discussed effective normal stress, oscillating normal stress and stress angle contours of the soil under three wave conditions, namely, mean wave height, once-in-a-century wave height and breaking wave height, and the influence of wave height on the seabed stability was obtained. Results show that the method can provide reference for the foundation design of offshore wind farm and location.

参考文献/References:

[1] BARENDS F B J.Interaction Between Ocean Waves and Sea-bed[C]//GECD.On Geotechnical Engineering for Coastal Development:Theory and Practice on Soft Ground(Geot-Coastal'91).Yokohama:GECD,1991:1091-1108.
[2]BEA R G,WRIGHT S G,SIRCAR P,et al.Wave-in-duced Slides in South Pass Block 70,Mississippi Delta [J].Journal of Geotechnical Engineering,1983,109(4):619-644.
[3]PUTNAM J A.Loss of Wave Energy Due to Percolation in a Permeable Sea Bottom[J].Transactions of the American Geophysical Union,1949,30(3):349-356.
[4]SLEATH J F A.Wave-induced Pressures in Beds of Sand[J].Journal of the Hydraulics Division,1970,96(2):367-378.
[5]LIU P L F.Damping of Water Waves Over Porous Bed[J].Journal of the Hydraulics Division,1973,99(12):2263-2271.
[6]MASSEL S R.Gravity Waves Propagated over Permeable Bottom[J].Journal of the Waterways Harbors and Coastal Engineering Divison,1976,102(2):111-121.
[7]NAKAMURA H,ONISHI R,MINAMIDE H.On the Seepage in the Seabed Due to Waves[C]//JSCE.Proceedings of 20th Coastal Engineering Conference.Taipei:JSCE,1973:421-428.
[8]MOSHAGEN H,TORUM A.Wave Induced Pressures in Permeable Seabeds[J].Journal of Waterways Harbors and Coastal Engineering Division,1975,101(1):49-57.
[9]OKUSA S.Wave-induced Stresses in Unsaturated Submarine Sediments[J].Geotechnique,1985,35(4):517-532.
[10]BIOT M A.General Theory of Three-dimensional Consolidation[J].Journal of Applied Physics,1941,12(2):155-164.
[11]ZEN K,YAMAZAKI.Mechanism of Wave-induced Liquefaction and Densification in Seabed Foundations[J].Soils and Foundations,1990,30(1):90-104.
[12]TSAI C P.Wave-induced Liquefaction Potential in a Porous Seabed in Front of a Breakwater[J].Ocean Engineering,1995,22(1):1-18.
[13]JENG D S.Soil Response in Cross-anisotropic Seabed Due to Standing Waves[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(1):9-19.
[14]JENG D S.Wave-induced Seabed Instability in Front of a Break Water[J].Ocean Engineering,1997,24(10):887-917.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2011-10-20
基金项目:“十一五”国家科技支撑计划项目(2006BAA01A23)
作者简介:张永利(1982-),男,河南开封人,工学博士,E-mail:zhylcg@126.com。
更新日期/Last Update: 2012-03-20