|本期目录/Table of Contents|

[1]文 桃,米海珍,马连生,等.石灰改良黄土状硫酸盐渍土强度的影响因素研究[J].建筑科学与工程学报,2015,32(02):104-110.
 WEN Tao,MI Hai-zhen,MA Lian-sheng,et al.Research on Effect Factors of Strength of Lime-treated Loessial Sulfate Salty Soil[J].Journal of Architecture and Civil Engineering,2015,32(02):104-110.
点击复制

石灰改良黄土状硫酸盐渍土强度的影响因素研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
32卷
期数:
2015年02期
页码:
104-110
栏目:
出版日期:
2015-03-30

文章信息/Info

Title:
Research on Effect Factors of Strength of Lime-treated Loessial Sulfate Salty Soil
作者:
文 桃米海珍马连生王月礼
兰州理工大学土木工程学院
Author(s):
WEN Tao, MI Hai-zhen, MA Lian-sheng, WANG Yue-li
School of Civil Engineering, Lanzhou University of Technology
关键词:
黄土状硫酸盐渍土强度无侧限抗压试验静三轴试验
Keywords:
loessial sulfate salty soil strength unconfined compression test static triaxial test
分类号:
-
DOI:
-
文献标志码:
A
摘要:
为充分了解石灰改良黄土状硫酸盐渍土强度的影响因素及规律,对大量不同制备条件的石灰改良黄土状硫酸盐渍土试样进行了无侧限抗压试验和静三轴试验。结果表明:石灰改良黄土状硫酸盐渍土的早期强度较高,但含盐量较高(大于等于1.5%)时,随着养护龄期的增加,其强度并不是一直提高,而是先增大后减小;石灰掺量过多或过少均会使石灰改良黄土状硫酸盐渍土的强度显著降低,灰土比2∶8最接近最佳配灰比;随着土塑性指数的增加,石灰改良黄土状硫酸盐渍土的强度迅速提高;随着含盐量的增加,石灰改良黄土状硫酸盐渍土的浸水强度和不浸水强度都先增大后减小,其峰值强度对应的含盐量约为0.5%;含盐量越高和土塑性指数越大,浸水强度与不浸水强度就越接近;试验结果对石灰改良黄土状硫酸盐渍土地基的工程应用具有参考价值。
Abstract:
In order to fully investigate the effect factors and influence rules of strength of limetreated loessial sulfate salty soil, a lot of samples of limetreated loessial sulfate salty soil under different conditions were researched by unconfined compression test and static triaxial test. The results indicate that limetreated loessial sulfate salty soil has high early strength. However, when salinity is rather high (not less than 1.5%), with the increase of curing period, the strength of limetreated loessial sulfate salty soil doesnt increase consistently, but first increases and then decreases. The strength of limetreated loessial sulfate salty soil is reduced significantly when the lime content is too much or too little, and the ratio of lime to soil 2∶8 is closest to optimum mixture ratio. The strength of limetreated loessial sulfate salty soil increases with the rise of plasticity index and first increases and then decreases with the rise of salt content, and the salt content corresponding to peak strength is about 0.5%. The higher the salt content and plasticity index, the closer the strength in water to the strength in air. The experimental results have reference value for engineering application of limetreated loessial sulfate salty soil.

参考文献/References:

相似文献/References:

[1]米海珍,黄建明,胡燕妮.三七灰土本构关系及强度性质试验[J].建筑科学与工程学报,2014,31(02):112.
 [J].Journal of Architecture and Civil Engineering,2014,31(02):112.
[2]朱 鹏,李宗阳,屈文俊,等.掺稻壳灰活性粉末混凝土配合比试验[J].建筑科学与工程学报,2015,32(06):58.
 ZHU Peng,LI Zong-yang,QU Wen-jun,et al.Experiment on Mix Proportion of Reactive Powder Concrete with Rice Husk Ash[J].Journal of Architecture and Civil Engineering,2015,32(02):58.
[3]邓宗才,耿雪辉,刘 岩,等.机场道面混掺纤维混凝土强度与抗弯韧性试验[J].建筑科学与工程学报,2016,33(05):70.
 DENG Zong-cai,GENG Xue-hui,LIU Yan,et al.Experiment on Strength and Flexural Toughness of Hybrid Fiber Reinforced Concrete for Airport Pavement[J].Journal of Architecture and Civil Engineering,2016,33(02):70.
[4]肖建庄,张 鹏,张青天,等.海水海砂再生混凝土的基本力学性能[J].建筑科学与工程学报,2018,35(02):16.
 XIAO Jian-zhuang,ZHANG Peng,ZHANG Qing-tian,et al.Basic Mechanical Properties of Seawater Sea-sand Recycled Concrete[J].Journal of Architecture and Civil Engineering,2018,35(02):16.

备注/Memo

备注/Memo:
更新日期/Last Update: 2015-03-31