|本期目录/Table of Contents|

[1]李宏男,林世伟,伊廷华.基于静力虚拟变形法的结构损伤识别研究[J].建筑科学与工程学报,2016,33(05):1-6.
 LI Hong-nan,LIN Shi-wei,YI Ting-hua.Study on Structural Damage Identification by Static Virtual Distortion Method[J].Journal of Architecture and Civil Engineering,2016,33(05):1-6.
点击复制

基于静力虚拟变形法的结构损伤识别研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
33卷
期数:
2016年05期
页码:
1-6
栏目:
出版日期:
2016-09-30

文章信息/Info

Title:
Study on Structural Damage Identification by Static Virtual Distortion Method
作者:
李宏男林世伟伊廷华
大连理工大学土木工程学院
Author(s):
LI Hong-nan, LIN Shi-wei, YI Ting-hua
School of Civil Engineering, Dalian University of Technology
关键词:
结构健康监测损伤识别虚拟变形法静力分析序列二次规划
Keywords:
structural health monitoring damage identification virtual distortion method static analysis sequential quadratic programming
分类号:
-
DOI:
-
文献标志码:
A
摘要:
为了提高大型结构损伤识别的计算效率,引入静力虚拟变形法(VDM),并结合序列二次规划(SQP)算法实现损伤定位和损伤定量。首先,基于VDM的基本原理,推导了损伤因子与虚拟变形的关系;其次,建立损伤应变与实际损伤应变的目标函数,并利用SQP算法优化目标函数,实现了结构损伤识别的快速计算;最后,以某实际大桥有限元模型为例,对其吊杆的损伤识别进行了数值模拟研究。设计了基于恒荷载的实时监测和基于车辆静荷载的定期检测2种工况对该方法进行验证。结果表明:该方法能够快速准确地识别出损伤发生的位置和程度。
Abstract:
In order to improve the computing efficiency of large structure damage identification, the static virtual distortion method (VDM) was introduced and coupled with the sequential quadratic programming (SQP) algorithm to realize the damage localization and damage quantification. Firstly, based on the basic principle of VDM, the relationship between the damage factor and the virtual distortion was deduced. Secondly, SQP algorithm was used to optimize the objective function which was established by damage strain and actual damage strain, and the fast computation of structural damage identification was realized. Finally, a finite element model of actual bridge was taken as example, and the damage identification of suspenders were studied by the numerical simulation. Two conditions of real time monitoring based on constant load and periodical detection based on vehicle static load were designed to verify the proposed method. The results show that the proposed method can rapidly and accurately identify the damage location and degree.

参考文献/References:

-

相似文献/References:

[1]薛刚,王崇阁.基于能量法的简支钢梁损伤识别试验及有限元分析[J].建筑科学与工程学报,2014,31(03):112.
 XUE Gang,WANG Chong-ge.Damage Identification Test and Finite Element Analysis of Simply Supported Steel Beam Based on Energy Dissipation Method[J].Journal of Architecture and Civil Engineering,2014,31(05):112.
[2]姜绍飞,杨博,党永勤.易损性分析在结构抗震及健康监测中的应用[J].建筑科学与工程学报,2008,25(02):15.
 JIANG Shao-fei,YANG Bo,DANG Yong-qin.Application of Vulnerability Analysis in Structural Seism and Health Monitoring[J].Journal of Architecture and Civil Engineering,2008,25(05):15.
[3]吴 多,刘来君,张筱雨,等.基于曲率模态曲线变化的桥梁损伤识别[J].建筑科学与工程学报,2018,35(02):119.
 WU Duo,LIU Lai-jun,ZHANG Xiao-yu,et al.Bridge Damage Identification Based on Curvature-mode Curve[J].Journal of Architecture and Civil Engineering,2018,35(05):119.
[4]周广东,操声浪,刘定坤.基于自适应动态惩罚遗传算法的桥梁监测无线测点优化研究[J].建筑科学与工程学报,2018,35(05):86.
 ZHOU Guang-dong,CAO Sheng-lang,LIU Ding-kun.Generalized Genetic Algorithm Integrating Self-adaptive Dynamic Penalty for Optimal Wireless Sensor Placement in Bridge Monitoring[J].Journal of Architecture and Civil Engineering,2018,35(05):86.
[5]李书进,赵 源,孔 凡,等.卷积神经网络在结构损伤诊断中的应用[J].建筑科学与工程学报,2020,37(06):29.
 LI Shu-jin,ZHAO Yuan,KONG Fan,et al.Application of Convolutional Neural Network in Structural Damage Identification[J].Journal of Architecture and Civil Engineering,2020,37(05):29.
[6]杨 铄,许清风,王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报,2022,39(04):38.[doi:10.19815/j.jace.2022.02043]
 YANG Shuo,XU Qing-feng,WANG Zhuo-lin.Research Progress on Structural Damage Detection Based on Convolutional Neural Networks[J].Journal of Architecture and Civil Engineering,2022,39(05):38.[doi:10.19815/j.jace.2022.02043]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-09-30