|本期目录/Table of Contents|

[1]石建光,郑雪锋,林树枝,等.灰缝厚度及水泥砂浆抹面对历史建筑砌体 结构性能的影响[J].建筑科学与工程学报,2020,37(01):67-74.[doi:10.19815/j.jace.2019.01017]
 SHI Jian-guang,ZHENG Xue-feng,LIN Shu-zhi,et al.Influence of Mortar Thickness and Cement Mortar Surface Strengthening on Behavior of Masonry Structure in Historical Buildings[J].Journal of Architecture and Civil Engineering,2020,37(01):67-74.[doi:10.19815/j.jace.2019.01017]
点击复制

灰缝厚度及水泥砂浆抹面对历史建筑砌体 结构性能的影响(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年01期
页码:
67-74
栏目:
出版日期:
2020-01-30

文章信息/Info

Title:
Influence of Mortar Thickness and Cement Mortar Surface Strengthening on Behavior of Masonry Structure in Historical Buildings
文章编号:
1673-2049(2020)01-0067-08
作者:
石建光1,郑雪锋1,林树枝1,2,谢益人3
(1. 厦门大学 建筑与土木工程学院,福建 厦门 361005; 2. 厦门市建设局,福建 厦门 361005; 3. 厦门合立道工程设计集团股份有限公司,福建 厦门 361004)
Author(s):
SHI Jian-guang1, ZHENG Xue-feng1, LIN Shu-zhi1,2, XIE Yi-ren3
(1. School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, Fujian, China; 2. Xiamen Construction Bureau, Xiamen 361005, Fujian, China; 3. Xiamen Hordor Engineering Design Group Co., Ltd., Xiamen 361004, Fujian, China)
关键词:
历史建筑 置换砂浆 砌体加固 剪压试验 灰缝厚度 砂浆抹面
Keywords:
historical building mortar replacement masonry strengthening shear-compression test mortar thickness mortar surface
分类号:
TU362
DOI:
10.19815/j.jace.2019.01017
文献标志码:
A
摘要:
在保证最小干预原则的前提下,对由于砂浆性能退化引起的历史建筑砌体结构安全性不足问题,提出了置换砂浆加固砌体结构的方法。以鼓浪屿历史建筑砌体结构为工程背景,模拟其结构力学性能,考虑不同灰缝厚度和单双面水泥砂浆抹面对历史建筑砌体结构性能的影响,共设计6个砌体试件,并进行了剪压复合试验。结果表明:在置换砂浆深度都是40 mm的情况下,灰缝厚度对砌体结构抗剪性能的影响十分显著,5 mm灰缝厚的试件比10 mm灰缝厚的试件承载力下降幅度为68.6%,而20 mm灰缝厚的试件比10 mm灰缝厚的试件承载力下降了8.7%; 在都未置换砂浆的情况下,单面水泥砂浆抹面的试件比未抹面的试件承载力提高了13.4%,双面水泥砂浆抹面的试件比未抹面的试件承载力提高了19.6%; 灰缝厚度和单双面水泥砂浆抹面对砌体结构的影响较为显著,在采用置换砂浆加固砌体结构时需要考虑这些影响; 试验结果可以为历史建筑砌体结构的加固提供一定的参考依据。
Abstract:
On the premise of guaranteeing the principle of minimum intervention, the method of replacing mortar to strengthen masonry structure was put forward to solve the problem of insufficient safety of masonry structure in historical buildings caused by deterioration of mortar performance. Taking the masonry structure of Gulangyu historical building as the engineering background, the existing mechanical properties of the structure were simulated, and six masonry specimens were designed considering the influence of different mortar thickness and the masonry structure strengthened with single or double-faced cement mortar on the behavior of the masonry structure in historical buildings. The shear-compression composite test was carried out. The results show that the mortar thickness has a significant effect on the shear resistance of masonry structures when the mortar replacement depth is 40 mm. The bearing capacity of specimens with 5 mm mortar thickness is 68.6% lower than that with 10 mm mortar thickness, while that with 20 mm mortar thickness is 8.7% lower than that with 10 mm mortar thickness. Without mortar replacement, the bearing capacity of specimens coated with single cement mortar is 13.4% higher than that of specimens without strengthening, and that of specimens coated with double cement mortar is 19.6% higher than that of specimens without strengthening. The mortar thickness and the strengthening with single-faced or double-faced cement mortar have significant effects on masonry structure. These effects need to be considered when using replacement mortar to strengthen masonry structure. The test results can provide some reference for the strengthening of masonry structure in historical buildings.

参考文献/References:

[1] 杨昌鸣,张 帆.近代历史建筑清水砖墙修复初探[J].建筑学报,2010(增1):51-54.
YANG Chang-ming,ZHANG Fan.Primary Research of Restoration of Fair Brick Masonry in Modern Historical Buildings[J].Architectural Journal,2010(S1):51-54.
[2]张 松,周 瑾.论近现代建筑遗产保护的制度建设[J].建筑学报,2005(7):5-7.
ZHANG Song,ZHOU Jin.On the System Construction of Modern Architectural Heritage Protection[J].Architectural Journal,2005(7):5-7.
[3]谢益人,石建光.砂浆置换法加固砌体结构的技术要点[J].墙材革新与建筑节能,2018(12):55-58.
XIE Yi-ren,SHI Jian-guang.Technical Key Points of Strengthening Masonry Structures by Mortar Replacement Method[J].Wall Materials Innovation & Energy Saving in Buildings,2018(12):55-58.
[4]魏智辉,潘 毅,邱洪兴,等.勾缝加固砖砌体墙的抗压性能试验[J].哈尔滨工业大学学报,2017,49(12):184-188.
WEI Zhi-hui,PAN Yi,QIU Hong-xing,et al.Experimental Study on Compressive Behavior of Masonry Walls Strengthened with Pointing Mortar[J].Journal of Harbin Institute of Technology,2017,49(12):184-188.
[5]邓 华.震后建筑垃圾估算与再利用和砌体注浆加固方法研究[D].厦门:厦门大学,2010.
DENG Hua.Study on Estimation and Reuse of Construction Waste and Reinforcement Method of Masonry Grouting After Earthquake[D].Xiamen:Xiamen University,2010.
[6]GB 50203—2011,砌体结构工程施工质量验收规范[S].
GB 50203—2011,Code for Acceptance of Constructional Quality of Masonry Structures[S].
[7]徐军平,李年维.砂浆水平灰缝厚度对砌体质量的影响[J].华东船舶工业学院学报,2000,14(4):26-28.
XU Jun-ping,LI Nian-wei.Effect of Mortar Joint Thickness on Masonry Envelope Quality[J].Journal of East China Shipbuilding Institute,2000,14(4):26-28.
[8]LOURENCO P B,RAMOS L F.Characterization of Cyclic Behavior of Dry Masonry Joints[J].Journal of Structural Engineering,2004,130(5):779-786.
[9]彭 斌,顾祥林.灰缝砂浆在压剪状态下的破坏准则[C]//顾祥林.2005年全国砌体结构基本理论与工程应用学术会议论文集.上海:同济大学出版社,2005:22-28.
PENG Bin,GU Xiang-lin.Failure Criteria of Mortar Beds Under Shear and Compression[C]//GU Xiang-lin.2005 National Conference on Basic Theory and Engineering Application of Masonry Structures.Shanghai:Tongji University Press,2005:22-28.
[10]GB 50702—2011,砌体结构加固设计规范[S].
GB 50702—2011,Code for Design of Strengthening Masonry Structures[S].
[11]李 明,王志浩.钢筋网水泥砂浆加固低强度砂浆砖砌体的试验研究[J].建筑结构,2003,33(10):34-36.
LI Ming,WANG Zhi-hao.Experimental Study on Brick Masonry Walls with Low Strength Mortar Strengthened with Steel-meshed Cement Mortar[J].Building Structure,2003,33(10):34-36.
[12]黄忠邦.水泥砂浆及钢筋网水泥砂浆面层加固砖砌体试验[J].天津大学学报:自然科学与工程技术版,1994,27(6):764-770.
HUANG Zhong-bang.The Study on the Adopting Cover with Cement Mortar and the Cover with Reinforced Cement Mortar to Strengthen Brick Masonry[J].Journal of Tianjin University:Science and Technology,1994,27(6):764-770.
[13]GB/T 50129—2011,砌体基本力学性能试验方法标准[S].
GB/T 50129—2011,Standard for Test Method of Basic Mechanics Properties of Masonry[S].
[14]ASTM E519/E519M-15,Standard Test Method for Diagonal Tension(Shear)in Masonry Assemblages[S].
[15]GB/T 50123—1999,土工试验方法标准[S].
GB/T 50123—1999,Standard for Soil Test Method[S].
[16]JGJ/T 70—2009,建筑砂浆基本力学性能试验方法标准[S].
JGJ/T 70—2009,Standard for Test Method of Basic Properties of Construction Mortar[S].
[17]GB/T 5101—2017,烧结普通砖[S].
GB/T 5101—2017,Fired Common Bricks[S].
[18]钱义良,王增泽.砖砌体沿阶梯形截面抗剪强度的试验方法及其分析[J].建筑结构,1981,11(4):23-30.
QIAN Yi-liang,WANG Zeng-ze.Test Method and Analysis of Shear Strength of Brick Masonry Along Stepped Section[J].Building Structure,1981,11(4):23-30.
[19]施楚贤.砌体结构理论与设计[M].2版.北京:中国建筑工业出版社,2003.
SHI Chu-xian.Masonry Structure Theory and Design[M].2nd ed.Beijing:China Architecture & Building Press,2011.
[20]蔡 勇,施楚贤,马超林,等.砌体在剪-压作用下抗剪强度研究[J].建筑结构学报,2004,25(5):118-123.
CAI Yong,SHI Chu-xian,MA Chao-lin,et al.Study of the Masonry Shear Strength Under Shear-compression Action[J].Journal of Building Structures,2004,25(5):118-123.

相似文献/References:

[1]石建光,李国聪,胡红梅,等.鼓浪屿历史建筑带肋方形钢筋的物理性状和腐蚀原因分析[J].建筑科学与工程学报,2023,40(06):10.[doi:10.19815/j.jace.2021.11117]
 SHI Jianguang,LI Guocong,HU Hongmei,et al.Analysis on physical properties and corrosion causes of ribbed square steel bars in Gulangyu historic building[J].Journal of Architecture and Civil Engineering,2023,40(01):10.[doi:10.19815/j.jace.2021.11117]

备注/Memo

备注/Memo:
收稿日期:2019-04-09
基金项目:厦门市鼓浪屿万古山风景名胜区管委会科研项目(XDHT2017470A)
作者简介:石建光(1962-),男,内蒙古包头人,教授,工学博士,E-mail:jgshi798@xmu.edu.cn。
更新日期/Last Update: 2020-01-13