|本期目录/Table of Contents|

[1]李 博,王贵和,吕高峰,等.导管法水下混凝土灌注厚度的颗粒流模拟[J].建筑科学与工程学报,2020,37(02):118-126.[doi:10.19815/j.jace.2019.03047]
 LI Bo,WANG Gui-he,LYU Gao-feng,et al.Particle Flow Simulation of Underwater Concrete Filling Thickness by Tremie Method[J].Journal of Architecture and Civil Engineering,2020,37(02):118-126.[doi:10.19815/j.jace.2019.03047]
点击复制

导管法水下混凝土灌注厚度的颗粒流模拟(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年02期
页码:
118-126
栏目:
出版日期:
2020-03-30

文章信息/Info

Title:
Particle Flow Simulation of Underwater Concrete Filling Thickness by Tremie Method
文章编号:
1673-2049(2020)02-0118-09
作者:
李 博1,王贵和1,吕高峰2,任 军3,于 博1
(1. 中国地质大学(北京)工程技术学院,北京 100083; 2. 北京市轨道交通建设管理有限公司,北京 100068; 3. 中交隧道工程局有限公司,北京 100102)
Author(s):
LI Bo1, WANG Gui-he1, LYU Gao-feng2, REN Jun3, YU Bo1
(1. School of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083, China; 2. Beijing Metro Construction Administration Corporation Ltd., Beijing 100068, China; 3. CCCC Tunnel Engineering Company Limited, Beijing 100102, Ch
关键词:
导管法 水下混凝土灌注 灌注厚度 PFC数值模拟 导管布置 地下水位
Keywords:
tremie method underwater concrete filling filling thickness PFC numerical simulation tremie arrangement groundwater level
分类号:
TU470
DOI:
10.19815/j.jace.2019.03047
文献标志码:
A
摘要:
依托北京地铁8号线永定门外站深基坑工程,介绍了导管法水下混凝土灌注工艺在深基坑封底工程中的应用。基于颗粒流理论和细观力学理论,将土体微细观结构与宏观行为联系起来,采用PFC数值软件建立了水下混凝土灌注模型,实现了砂卵石地层单导管、多导管水下混凝土灌注过程的可视化,得到各时段的灌注情况及最终封底结果。对比同位置实测厚度曲线,得到最大误差0.3 m,验证了模型的合理性。分析了影响深基坑水下混凝土灌注厚度的敏感性因素(导管布置形式、地下水位高度)。结果表明:基于颗粒流理论的PFC数值仿真技术适用于模拟导管法水下混凝土灌注过程; 导管布置稀疏,颗粒无法相互作用,容易出现“堆积”和“凹陷”现象,平均灌注厚度不足3 m; 参考单导管水下混凝土3 m的扩散半径,适当加密导管,可保证封底厚度; 地下水位越高,厚度起伏越大,水位越低,灌注厚度越均匀; 工程允许范围内,适当加密导管可保证混凝土封底厚度; 采取降水措施降低地下水位,可保证封底平整度。
Abstract:
Based on the deep foundation pit project of Yongdingmenwai Station of Beijing Metro Line 8, the application of the underwater concrete filling process of the tremie method in the deep foundation pit sealing project was introduced. On the basis of particle flow theory and micromechanics, the micro-structure and macro-behavior of soil were connected. The underwater concrete filling model was established by PFC numerical software. The visualization of underwater concrete pouring process of single-tremie and multi-tremie in sandy pebble stratum was realized, and the pouring situation and final sealing results in each period were obtained. Comparing the measured thickness curves of the same position, the maximum error was 0.3 m, which verified the rationality of the model. The sensitivity factors affecting the thickness of underwater concrete in deep foundation pits(the form of tremie arrangement and the height of groundwater level)were proposed. The results show that the PFC numerical simulation technology based on particle flow theory is suitable for the underwater concrete filling process of simulated tremie method. When the tremie layout is sparse, the particles can not interact, the more likely to appear “stacking” and “sinking”, the average filling thickness is less than 3 m. Refer to the diffusion radius of 3 m of single-tremie underwater concrete, the tremie should be properly encrypted to ensure the thickness of the back cover. The higher the groundwater lever is, the greater the thickness fluctuation is. The lower the water level is, the more uniform the filling thickness is. Within the scope of the project, the appropriate encryption of the tremie can ensure the thickness of the concrete back cover. The use of precipitation measures to reduce the groundwater level can ensure the flatness of the back cover.

参考文献/References:

[1] 付祖良.钻孔灌注桩水下混凝土灌注技术研究与应用[D].武汉:华中科技大学,2006.
FU Zu-liang.Research and Application on the Technology of Pouring Concrete of Bored Piles Under Water[D].Wuhan:Huazhong University of Science and Technology,2006.
[2]杨光煦.水下灌筑混凝土[M].北京:水利电力出版社,1983.
YANG Guang-xu.Underwater Concrete Pouring[M].Beijing:Water Resources and Electric Power Press,1983.
[3]李欠秋.加强建筑施工中钻孔灌注桩技术的研究[J].城市建筑,2013(8):58.
LI Qian-qiu.Strengthening Research on the Technology of Bored Pile in Construction[J].Urbanism and Architecture,2013(8):58.
[4]仲伟秋,张志伟,冮明姝.水下不分散混凝土短柱抗震性能试验[J].建筑科学与工程学报,2011,28(1):49-52,90.
ZHONG Wei-qiu,ZHANG Zhi-wei,GANG Ming-shu.Experiment on Seismic Performance of Non-dispersible Underwater Concrete Short Columns[J].Journal of Architecture and Civil Engineering,2011,28(1):49-52,90.
[5]李继业,刘福胜.新型混凝土实用技术手册[M].北京:化学工业出版社,2005.
LI Ji-ye,LIU Fu-sheng.Handbook of New Concrete Practical Technology[M].Beijing:Chemical Industry Press,2005
[6]刘 建,彭振斌.高强砼灌注桩新工艺及其应用[J].中南工业大学学报,1998(4),29(4):36-318.
LIU Jian,PENG Zhen-bin.High Strength Concrete Grouting Pile and Its New Application Technology[J].Journal of Central South University of Technology,1998,29(4):316-318.
[7]祝成功,王 威.导管法浇筑桩基混凝土的施工要点[J].水利科技与经济,2004,10(3):189.
ZHU Cheng-gong,WANG Wei.Key Points for Construction of Pile Foundation Concrete by Pipe Method[J].Water Conservancy Science and Technology and Economy,2004,10(3):189.
[8]林钦生.水下浇筑混凝土配合比的确定[J].混凝土,1992(3):38-46.
LIN Qin-sheng.Determination of the Proportion of Underwater Pouring Concrete[J].Concrete,1992(3):38-46.
[9]贾少卿.导管法灌注水下抗高分散型混凝土的研究[D].淮南:安徽理工大学,2015.
JIA Shao-qing.Catheter Perfusion Non-dispersible Underwater Concrete Research[D].Huainan:Anhui University of Science & Technology,2015.
[10]王晓梅,阳小峻,李芳伟.鄂东长江大桥钻孔灌注桩水下混凝土施工技术[J].混凝土,2009(11):92-93,97.
WANG Xiao-mei,YANG Xiao-jun,LI Fang-wei.Construction Technology of Underwater Concrete in Bored Pile of Eastern Long River Bridge in Hubei[J].Concrete,2009(11):92-93,97.
[11]李宝平,杨兆民.地下室钢筋混凝土裂缝控制[J].建筑科学与工程学报,2002,19(4):10-13.
LI Bao-ping,YANG Zhao-min.Control over Cracks of Basement Reinforced Concrete[J].Journal of Architecture and Civil Engineering,2002,19(4):10-13.
[12]郭宏智.导管法水下灌注用砼的配料和配合比设计[J].西部探矿工程,2003(7):145-147.
GUO Hong-zhi.Design of Mix and Proportion of Concrete for Underwater Grouting by Conduit Method[J].West-China Exploration Engineering,2003(7):145-147.
[13]杨文渊,徐 犇.公路工程质检工程师手册[M].北京:人民交通出版社,2005.
YANG Wen-yuan,XU Ben.Handbook of Highway Engineering Quality Inspection Engineer[M].Beijing:China Communications Press,2005.
[14]周 健,池 永,池毓蔚,等.颗粒流方法及PFC2D程序[J].岩土力学,2000,21(3):271-274.
ZHOU Jian,CHI Yong,CHI Yu-wei,et al.The Method of Particle Flow and PFC2D Code[J].Rock and Soil Mechanics,2000,21(3):271-274.
[15]杜 娟.二维颗粒流程序PFC2D特点及其应用现状综述[J].安徽建筑大学学报,2009,17(5):68-70.
DU Juan.The Overview of Characteristics and Applications of PFC2D[J].Journal of Anhui Jianzhu University,2009,17(5):68-70.
[16]徐 泳,孙其诚,张 凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
XU Yong,SUN Qi-cheng,ZHANG Ling,et al.Advances in Discrete Element Methods for Particulate Materials[J].Advances in Mechanics,2003,33(2):251-260.
[17]陈 俊,张 东,黄晓明.离散元颗粒流软件(PFC)在道路工程中的应用[M].北京:人民交通出版社股份有限公司,2015.
CHEN Jun,ZHANG Dong,HUANG Xiao-ming.Application of Particle Flow Code(PFC)in Road Engineering[M].Beijing:China Communications Press Co.,Ltd.,2015.
[18]MUSER M.Valentin L.Popov:Contact Mechanics and Friction:Physical Principles and Applications[J].Tribology Letters,2010,40(3):395-395.
[19]CUNDALL P A.PFC2D User's Manual(Version 3.1)[M].Saint Paul:Itasca Consulting Group Inc,2004.
[20]王 涛,吕 庆,李 杨,等.颗粒离散元方法中接触模型的开发[J].岩石力学与工程学报,2009,28(增2):4040-4045.
WANG Tao,LU Qing,LI Yang,et al.Development of Contact Model in Particle Discrete Element Method[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(S2):4040-4045.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-05-21
基金项目:住房和城乡建设部科技计划项目(2016-K4-056)
作者简介:李 博(1990-),男,河北张家口人,工学博士研究生,E-mail:357428609@qq.com。
更新日期/Last Update: 2020-04-21