|本期目录/Table of Contents|

[1]亓兴军,赵 越,赵 奇.基于模态挠度的斜交桥静载试验数值方法[J].建筑科学与工程学报,2020,37(03):55-62.[doi:10.19815/j.jace.2019.10060]
 QI Xing-jun,ZHAO Yue,ZHAO Qi.Numerical Method of Static Load Test for Skew Bridge Based on Modal Deflection[J].Journal of Architecture and Civil Engineering,2020,37(03):55-62.[doi:10.19815/j.jace.2019.10060]
点击复制

基于模态挠度的斜交桥静载试验数值方法(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年03期
页码:
55-62
栏目:
出版日期:
2020-05-30

文章信息/Info

Title:
Numerical Method of Static Load Test for Skew Bridge Based on Modal Deflection
文章编号:
1673-2049(2020)03-0055-08
作者:
亓兴军1,2,赵 越1,2,赵 奇1,2
(1. 山东建筑大学 交通工程学院,山东 济南 250101; 2. 山东建筑大学 山东省高校土木结构防灾减灾协同创新中心,山东 济南 250101)
Author(s):
QI Xing-jun1,2, ZHAO Yue1,2, ZHAO Qi1,2
(1. School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; 2. Shandong Co-innovation Center for Disaster Prevention and Mitigation of Civil Structures, Shandong Jianzhu University, Jinan 250101, Shandong, China)
关键词:
模态挠度 斜交桥 误差分析 位移柔度矩阵 静载试验
Keywords:
modal deflection skew bridge error analysis displacement flexibility matrix static load test
分类号:
TU973.2
DOI:
10.19815/j.jace.2019.10060
文献标志码:
A
摘要:
为了探讨不中断交通情况下进行桥梁静载试验的可行性,以斜交简支空心板桥龙山桥为研究对象,研究基于模态挠度的静载试验应用于斜交板桥承载力评估的计算精度问题。首先利用环境激励获得桥梁在运营状态下的模态参数,再采用附加质量法对桥梁模态振型进行质量归一化,计算桥梁的位移柔度矩阵,最后利用位移柔度矩阵和等效荷载分配的方法计算桥梁的模态挠度。建立龙山桥的有限元梁格计算模型,根据荷载试验规程设计了静载试验中载和偏载2个加载工况,利用龙山桥的前5阶模态参数计算位移柔度矩阵,预测桥梁在2个加载工况下各控制截面的模态挠度,并与有限元模型计算挠度和实测挠度相对比。结果表明:中载工况下模态挠度与计算挠度相比,相对误差均小于5%,控制截面最大计算相对误差为3.55%; 偏载工况下模态挠度与计算挠度相比,相对误差均小于6%,控制截面最大相对误差为5.15%,能够满足工程精度要求; 模态挠度能够有效代替桥梁静载试验的实测静载挠度,利用模态挠度评估桥梁承载力具有较强的有效性和可行性。
Abstract:
In order to explore the feasibility of carrying out bridge static load test under traffic excitation, taking the Longshan bridge,a skew simply supported hollow slab bridge, as the study object, the calculation accuracy of applying static load test based on modal deflection method to the bearing capacity evaluation of skew slab bridge was studied. Firstly, the modal parameters of the bridge under the operation state were obtained by using environmental excitation. Then the modal shapes of the bridge were normalized by using the additional mass method, and the displacement compliance matrix of the bridge was calculated. Finally the modal deflection of the bridge was calculated by using the displacement compliance matrix and the equivalent load distribution method. The finite element beam lattice calculation model of Longshan bridge was established. According to the load test method, two loading conditions of static load test and eccentric load were designed. The displacement flexibility matrix was calculated by using the first fifth modal parameters of Longshan bridge. The modal deflections of each control section of the bridge under the two loading conditions were predicted, and compared with the calculated deflection of the finite element model and measured deflection. The results show that, compared with the calculated deflection, the error of the medium load condition is less than 5% and the maximum calculation error of the control section is 3.55%. Compared with the calculated deflection, the error of the partial load condition is less than 6%, and the maximum error of the control section is 5.15%, which can meet the engineering precision requirements. The modal deflection can effectively replace the measured static deflection of bridge static load test,and it is effective and feasible to use modal deflection to evaluate bridge bearing capacity.

参考文献/References:

[1] 《中国公路学报》编辑部.中国桥梁工程学术研究综述·2014[J].中国公路学报,2014,27(5):1-96.
Editorial Department of China Journal of Highway and Transport.Review on China's Bridge Engineering Research:2014[J].China Journal of Highway Transport,2014,27(5):1-96.
[2]李 闯,赵素锋.桥梁结构快速检测鉴定方法的研究[J].公路交通技术,2004(6):60-65,85.
LI Chuang,ZHAO Su-feng.Study on Rapid Test and Identification of Bridge Structures[J].Technology of Highway and Transport Technology,2004(6):60-65,85.
[3]梁 鹏,王秀兰,楼灿洪,等.基于裂缝特征库的混凝土梁桥承载能力快速评定[J].中国公路学报,2014,27(8):32-41,72.
LIANG Peng,WANG Xiu-lan,LOU Can-hong,et al.Rapid Evaluation of Load-bearing Capacity of Concrete Beam Bridge Based on Crack Feature Library[J].China Journal of Highway and Transport,2014,27(8):32-41,72.
[4]PERERA R,HUERTA C,ORQUIN J M.Identification of Damage in RC Beams Using Indexes Based on Local Modal Stiffness[J].Construction and Building Materials,2008,22(8):1656-1667.
[5]JI H S,SON B J,CHANG S Y.Field Testing and Capacity-ratings of Advanced Composite Materials Short-span Bridge Superstructures[J].Composite Structures,2007,78(2):299-307.
[6]SASMAL S,RAMANJANEYULU K.Condition Evaluation of Existing Reinforced Concrete Bridges Using Fuzzy Based Analytic Hierarchy Approach[J].Expert Systems with Applications,2008,35(3):1430-1443.
[7]李东平,唐新葵,王宁波.基于实际影响线的桥梁快速检测方法[J].桥梁建设,2019,49(1):42-46.
LI Dong-ping,TANG Xin-kui,WANG Ning-bo.Bridge Rapid Detection Method Based on Actual Influence Lines[J].Bridge Construction,2019,49(1):42-46.
[8]张劲泉,李鹏飞,董振华,等.服役公路桥梁可靠性评估的若干问题探究[J].土木工程学报,2019,52(增1):159-173.
ZHANG Jin-quan,LI Peng-fei,DONG Zhen-hua,et al.Study on Some Reliability Evaluation Problems of Existing Highway Bridges[J].China Civil Engineering Journal,2019,52(S1):159-173.
[9]CASAROTTI C,PINHO R.An Adaptive Capacity Spectrum Method for Assessment of Bridges Subjected to Earthquake Action[J].Bulletin of Earthquake Engineering,2007,5(3):377-390.
[10]邱飞力,张立民,张卫华.基于模态柔度矩阵的结构损伤识别[J].噪声与振动控制,2015,35(4):101-106.
QIU Fei-li,ZHANG Li-min,ZHANG Wei-hua.Structure Damage Detection Based on Modal Flexibility Matrix[J].Noise and Vibration Control,2015,35(4):101-106.
[11]周 云,易伟建,蒋运忠,等.多参考点脉冲锤击法识别桥梁模态柔度的实践[J].中国公路学报,2015,28(9):46-56.
ZHOU Yun,YI Wei-jian,JIANG Yun-zhong,et al.Practice of Bridge Modal Flexibility Identification Using Multiple-reference Impact Test[J].China Journal of Highway and Transport,2015,28(9):46-56.
[12]宋若雨.基于柔度矩阵的简支梁桥评定及损伤识别方法[D].北京:北京交通大学,2016.
SONG Ruo-yu.Evaluation and Damage Identification Method of Girder Bridge Based on Flexibility Matrix[D].Beijing:Beijing Jiaotong University,2016.
[13]林贤坤,覃柏英,张令弥,等.基于附加质量的试验模态振型质量归一化[J].振动、测试与诊断,2012,32(5):784-790,864.
LIN Xian-kun,QIN Bai-ying,ZHANG Ling-mi,et al.Way of Getting Mass-normalized Experimental Mode Shapes Based on Mass Changes[J].Journal of Vibration,Measurement & Diagnosis,2012,32(5):784-790,864.
[14]林贤坤,张令弥,郭勤涛,等.基于模态挠度法的预应力连续箱梁桥状态评估[J].土木工程学报,2010,43(10):83-90.
LIN Xian-kun,ZHANG Ling-mi,GUO Qin-tao,et al.Application of Modal Deflection Method for Condition Assessment of Prestressed Concrete Continuous Box-girder Bridges[J].China Civil Engineering Journal,2010,43(10):83-90.
[15]林贤坤,覃柏英,张令弥,等.模态分析的模态挠度法在桥梁状态评估中的应用[J].振动与冲击,2013,32(14):52-57,76.
LIN Xian-kun,QIN Bo-ying,ZHANG Ling-mi,et al.Application of Modal Deflection Method in Condition Assessment of a Bridge Based on Operational Modal Analysis Without Interrupting Traffic[J].Journal of Vibration and Shock,2013,32(14):52-57,76.
[16]焦驰宇,桂晓珊,龙佩恒,等.考虑施工阶段的长悬臂变宽箱梁桥受力性能研究[J].施工技术,2018,47(增4):613-618.
JIAO Chi-yu,GUI Xiao-shan,LONG Pei-heng,et al.Research on Long-arm Cantilever Wide Single Box Girder Bridge Under Different Construction Conditions[J].Construction Technology,2018,47(S4):613-618.
[17]ZHANG J,TIAN Y D,YANG C Q,et al.Vibration and Deformation Monitoring of a Long-span Rigid-frame Bridge with Distributed Long-gauge Sensors[J].Journal of Aerospace Engineering,2017,30(2):B4016014.
[18]陈 钊.车轮冲击力测量与桥梁性能快速评值[D].南京:东南大学,2017.
CHEN Zhao.Tire Force Measurement and Rapid Bridge Test[D].Nanjing:Southeast University,2017.
[19]WANG T,ZHANG L M,TAMURA Y.An Operational Modal Analysis Method in Frequency and Spatial Domain[J].Earthquake Engineering and Engineering Vibration,2005,4(2):295-300.
?

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-08-24
基金项目:山东省高等学校土木结构防灾减灾协同创新中心项目(XTM201904); 山东省交通科技计划项目(2019Y10); 国家自然科学基金项目(51178258)
作者简介:亓兴军(1974-),男,山东济南人,教授,工学博士,E-mail:qxj123@163.com。
更新日期/Last Update: 2020-06-08