|本期目录/Table of Contents|

[1]肖成志,司 雨,王子寒,等.注浆微型钢管桩体抗弯力学性能[J].建筑科学与工程学报,2020,37(04):87-96.[doi:10.19815/j.jace.2019.11028]
 XIAO Cheng-zhi,SI Yu,WANG Zi-han,et al.Flexural Mechanical Properties of Grouted Micro-steel-pipe-piles[J].Journal of Architecture and Civil Engineering,2020,37(04):87-96.[doi:10.19815/j.jace.2019.11028]
点击复制

注浆微型钢管桩体抗弯力学性能(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年04期
页码:
87-96
栏目:
出版日期:
2020-07-30

文章信息/Info

Title:
Flexural Mechanical Properties of Grouted Micro-steel-pipe-piles
文章编号:
1673-2049(2020)04-0087-10
作者:
肖成志1,司 雨1,王子寒1,李立书2
(1. 河北工业大学 土木与交通学院,天津 300401; 2. 承德市公路工程管理处,河北 承德 067000)
Author(s):
XIAO Cheng-zhi1, SI Yu1, WANG Zi-han1, LI Li-shu2
(1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; 2. Department of Administration of Chengde Road Engineering, Chengde 067000, Hebei, China)
关键词:
微型钢管桩 注浆 抗弯极限荷载 钢管 抗弯试验
Keywords:
micro-steel-pipe-pile grouting flexural ultimate load steel pipe flexural test
分类号:
TU311
DOI:
10.19815/j.jace.2019.11028
文献标志码:
A
摘要:
基于15根注浆微型钢管桩体的抗弯荷载试验,综合分析钢管直径d和壁厚t、浆体水灰比W、钢管表面布孔直径r和间距s等因素对注浆微型钢管桩体抗弯承载特性、变形和破坏特点的影响。结果表明:相同桩径时,钢管直径和壁厚对微型钢管桩体抗弯承载特性影响显著,桩体极限抗弯荷载值随钢管直径和壁厚的增加近似呈线性增加; 当0.59≤d/D≤0.72(D为桩径),浆体水灰比在0.45~0.75之间时对桩体极限抗弯荷载的影响较小,钢管表面布孔形式对桩体极限抗弯荷载的影响较小; 基于注浆微型钢管桩外包浆体和钢管的荷载-应变曲线分析可知,注浆微型钢管桩体抗弯破坏标准可以以外包浆体的破坏为准; 当0.28≤d/D<0.59时,钢管屈服和受压区外包浆体开裂所对应的抗弯荷载与极限抗弯荷载基本相同,而当0.59≤d/D≤0.72时,荷载加至极限抗弯荷载80%时钢管屈服,注浆微型钢管桩体呈现出明显的延性特征,钢管及内核注浆体自身强度发挥充分且抗弯承载作用明显,建议实践中微型钢管桩体钢管设计时以0.59≤d/D≤0.72为宜。
Abstract:
On the basis of flexural loading test for 15 micro-steel-pipe-piles, the effect of diameter d and wall thickness t of steel pipe, water cement ratio of slurry, diameter r and spacing s of steel pipe surface grouting holes on the flexural bearing capacity, deformation and failure properties of micro-steel-pipe-piles were comprehensively analyzed. The results show that with the same diameter of pile body, the diameter and wall thickness of the steel pipe have a significant influence on the flexural bearing capacity of the micro-steel-pipe-piles. With the increase of the diameter and wall thickness of steel pipe, the ultimate flexural load of micro-piles increases approximately linearly. When 0.59≤d/D≤0.72(D is pile diameter), the water cement ratio of the slurry changes between 0.45 and 0.75, the influence on the ultimate flexural load of the pile is small, and the influence of hole arrangement on the ultimate flexural load of piles is small. Based on the analysis of the load-strain curves of the grouted micro-steel-pipe pile and the surrounding slurry, the standard of the flexural failure of the piles is based on the damage of the surrounding slurry. When 0.28≤d/D<0.59, the flexural loads corresponding to steel pipe yielding and outside slurry cracking almost equal to the ultimate flexural load. When 0.59≤d/D≤0.72, the steel pipe at midspan begins to yield when the applied load is about 80% of the ultimate load, and the micro-steel-pipe-piles exhibit well extensible performance. The strengths of steel pipes and slurry inside pipes have been utilized fully and they can play main role against flexural performance of micro-piles. It is suggested that 0.59≤d/D≤0.72 should be used in the design of micro-steel-pipe-pile.

参考文献/References:

[1] KRAFT L M,RAY R P,KAGAWA T,et al.Theoretical t-z Curves[J].Journal of Geotechnical and Geoenvironmental Engineering,1981,107(11):1543-1561.
[2]MEYERHOF G G,SASTRY V V R N,YALCIN A S.Lateral Deflection of Flexible Piles[J].Canadian Geotechnical Journal,1988,25(3):511-522.
[3]SUN S,ZHU B,WANG J.Design Method for Stabilization of Earth Slopes with Micropiles[J].Soils and Foundations,2013,53(4):487-497.
[4]ZHANG X D.Research and Application of Mini-sized Steel Pipe Pile Technology in Limited Space[J].Procedia Engineering,2014,73:16-22.
[5]白晨光,贾立宏,马金普,等.抗弯功能微型桩在基坑支护中的应用[J].岩土工程学报,2006,28(增):1656-1658.
BAI Chen-guang,JIA Li-hong,MA Jin-pu,et al.Application of Micropiles with Anti-bending Function to Retaining and Protection of Foundation Excavation[J].Chinese Journal of Geotechnical Engineering,2006,28(S):1656-1658.
[6]唐咸远,杨和平,肖 杰,等.注浆微型钢管桩抗弯承载力及抗弯刚度研究[J].工业建筑,2016,46(10):89-94.
TANG Xian-yuan,YANG He-ping,XIAO Jie,et al.Experimental Study of Flexural Behavior of Grouted Micro Steel Pipe Piles[J].Industrial Construction,2016,46(10):89-94.
[7]吉伯海,胡正清,陈甲树,等.圆钢管轻集料混凝土构件抗弯性能的试验研究[J].土木工程学报,2007,40(8):35-40.
JI Bo-hai,HU Zheng-qing,CHEN Jia-shu,et al.An Experimental Study on the Behavior of Lightweight Aggregate Concrete Filled Circular Steel Tubes Under Pure Bending Load[J].China Civil Engineering Journal,2007,40(8):35-40.
[8]丁发兴,余志武.圆钢管自密实混凝土纯弯力学性能[J].交通运输工程学报,2006,6(1):63-68,79.
DING Fa-xing,YU Zhi-wu.Pure Bending Properties of Self Compacting Concrete Filled Circular Steel Tube[J].Journal of Traffic and Transportation Engineering,2006,6(1):63-68,79.
[9]卓 杨,曹进捷,邱 松.大直径离心钢管混凝土管桩抗弯承载力研究[J].岩土工程学报,2011,33(增2):135-138.
ZHUO Yang,CAO Jin-jie,QIU Song.Flexural Capacity of Large-diameter Thin-wall Steel and Spun Concrete Composite Piles[J].Chinese Journal of Geotechnical Engineering,2011,33(S2):135-138.
[10]VARMA A H,RICLES J M,SAUSE R,et al.Seismic Behavior and Modeling of High-strength Composite Concrete-filled Steel Tube(CFT)Beam-columns[J].Journal of Constructional Steel Research,2002,58(5/6/7/8):725-758.
[11]王少杰,刘福胜,段绪胜,等.抗弯功能微型桩试验研究与应用[J].建筑科学,2009,25(11):73-75.
WANG Shao-jie,LIU Fu-sheng,DUAN Xu-sheng,et al.Experimental Study and Application on Micro Piles with Anti-bending Function[J].Building Science,2009,25(11):73-75.
[12]邓朗妮,钱香国,马 骏,等.微型钢管桩正截面受弯性能试验及有限元分析[J].桂林理工大学学报,2017,37(4):619-623.
DENG Lang-ni,QIAN Xiang-guo,MA Jun,et al.Micro Steel Pipe Piles of Normal Section Flexural Performance Test and Finite Element Analysis[J].Journal of Guilin University of Technology,2017,37(4):619-623.
[13]陈再谦,蒲黍絛,郭 果,等.微型钢管混凝土构件抗弯性能数值模拟研究[J].重庆交通大学学报:自然科学版,2018,37(1):72-79.
CHEN Zai-qian,PU Shu-tao,GUO Guo,et al.Numerical Simulation on the Bending Properties of Micro CFST Members[J].Journal of Chongqing Jiaotong University:Natural Science,2018,37(1):72-79.
[14]武 斌,谭卓英,车 媛.圆钢管混凝土抗弯刚度研究[J].混凝土,2018(12):34-39.
WU Bin,TAN Zhuo-ying,CHE Yuan.Study on Flexural Stiffness of Concrete-filled Steel Tubes with Circular Sections[J].Concrete,2018(12):34-39.
[15]乐腾胜,雷金波,周 星,等.有孔管桩单桩承载性状试验及分析[J].岩土力学,2016,37(增2):415-420.
YUE Teng-sheng,LEI Jin-bo,ZHOU Xing,et al.Test and Analysis of Bearing Capacity Behavior of Pipe-pile with Holes[J].Rock and Soil Mechanics,2016,37(S2):415-420.
[16]张津荣.薄壁开孔圆钢管轴压稳定分析[J].建筑结构,2013,43(增1):1444-1446.
ZHANG Jin-rong.Axial Compression Stability Analysis of Thin-walled Tubular with Hole[J].Building Structure,2013,43(S1):1444-1446.
[17]梁中勇,饶军应,陈再谦,等.钢管-桩心配筋微型桩极限抗弯承载力研究[J].铁道建筑,2018,58(11):99-102.
LIANG Zhong-yong,RAO Jun-ying,CHEN Zai-qian,et al.Study on Ultimate Flexural Bearing Capacity of Mini Pile Featuring Steel Tube and Centered Steel Bar[J].Railway Engineering,2018,58(11):99-102.
[18]杜新喜,胡 锐,袁焕鑫,等.混合配筋预应力混凝土管桩抗弯承载性能研究[J].土木工程学报,2019,52(1):44-52.
DU Xin-xi,HU Rui,YUAN Huan-xin,et al.Study on Flexural Behavior of Prestressed Concrete Pipe Pile with Hybrid Reinforcement[J].China Civil Engineering Journal,2019,52(1):44-52.
[19]张忠苗,刘俊伟,谢志专,等.新型混凝土管桩抗弯剪性能试验研究[J].岩土工程学报,2011,33(增2):271-277.
ZHANG Zhong-miao,LIU Jun-wei,XIE Zhi-zhuan,et al.Experimental Study on Flexural and Shearing Properties of Modified Concrete Pipe Piles[J].Chinese Journal of Geotechnical Engineering,2011,33(S2):271-277.
[20]陈 龙,邱文亮,耿铁锁,等.预制高强混凝土薄壁钢管桩抗弯试验与数值模拟[J].大连理工大学学报,2017,57(1):61-67.
CHEN Long,QIU Wen-liang,GENG Tie-suo,et al.Bending Test and Numerical Simulation of Precast Thin-wall Steel and Spun Concrete Composite Pile[J].Journal of Dalian University of Technology,2017,57(1):61-67.
[21]JGJ 94—2008,建筑桩基技术规范[S].
JGJ 94—2008,Technical Code for Building Pile Foundations[S].

相似文献/References:

[1]董敏忠.注浆纠偏隧道水平位移的数值模拟[J].建筑科学与工程学报,2021,38(06):138.[doi:10.19815/j.jace.2021.08053]
 DONG Min-zhong.Numerical Simulation on Horizontal Deformation Control of Tunnel by Grouting[J].Journal of Architecture and Civil Engineering,2021,38(04):138.[doi:10.19815/j.jace.2021.08053]

备注/Memo

备注/Memo:
收稿日期:2019-11-10
基金项目:国家自然科学基金项目(41877255); 河北省自然科学基金项目(E2018202108); 承德市科技支撑计划项目(201706A075)
作者简介:肖成志(1976-),男,湖北荆州人,教授,工学博士,E-mail:chengzhixiao@hotmail.com。
更新日期/Last Update: 2020-07-29