|本期目录/Table of Contents|

[1]刘永健,龙 辛,姜 磊,等.基于热点应力法的钢管混凝土焊接节点疲劳构造细节比较[J].建筑科学与工程学报,2020,37(05):1-12.[doi:10.19815/j.jace.2020.09035]
 LIU Yong-jian,LONG Xin,JIANG Lei,et al.Comparison on Fatigue Structural Details of CFST Welded Joints Based on Hot Spot Stress Method[J].Journal of Architecture and Civil Engineering,2020,37(05):1-12.[doi:10.19815/j.jace.2020.09035]
点击复制

基于热点应力法的钢管混凝土焊接节点疲劳构造细节比较(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年05期
页码:
1-12
栏目:
出版日期:
2020-09-30

文章信息/Info

Title:
Comparison on Fatigue Structural Details of CFST Welded Joints Based on Hot Spot Stress Method
文章编号:
1673-2049(2020)05-0001-12
作者:
刘永健1,2,龙 辛1,姜 磊1,2,刘震北1
1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 公路大型结构安全教育部工程研究中心,陕西 西安 710064
Author(s):
LIU Yong-jian1,2, LONG Xin1, JIANG Lei1,2, LIU Zhen-bei1
1. School of Highway, Chang’an University, Xi’an 710064, Shaanxi, China; 2. Research Center of Highway Large Structure Engineering on Safety of Ministry of Education, Chang’an University, Xi’an 710064, Shaanxi, China
关键词:
热点应力法 应力集中系数 钢管混凝土 焊接节点 疲劳构造细节 疲劳性能
Keywords:
hot spot stress method stress concentration factor concrete-filled steel tube welded joint fatigue structural detail fatigue performance
分类号:
U441.5
DOI:
10.19815/j.jace.2020.09035
文献标志码:
A
摘要:
以钢管混凝土组合桁梁桥为研究对象,总结给出基于热点应力法的节点疲劳评估流程,并对其疲劳构造细节进行研究。结果表明:在矩形空管等宽节点基础上,主管内填混凝土使得节点支、主管表面最大热点应力幅分别降低10.86%和26.51%,节点疲劳寿命提高3.78倍; 在圆形空管节点基础上,主管内填混凝土使得节点支、主管表面最大热点应力幅分别降低13.88%和16.39%,节点疲劳寿命提高2.11倍; 在主方支圆空管节点基础上,主管内填混凝土使得节点支、主管表面最大热点应力幅分别降低20.06%和29.81%,节点疲劳寿命提高1.92倍; 此外,对于矩形钢管混凝土节点,先后在主管内壁设置PBL加劲肋和腹板采用整体节点板,支管表面最大热点应力幅分别继续下降12.11%和29.20%,主管表面最大热点应力幅分别继续下降8.81%和15.64%,由此可知,改变矩形空管节点的构造细节,可以使焊趾处的应力分布趋于均匀,疲劳寿命得到显著提高; 同时,在确保各类节点几何尺寸基本相当的前提下,研究得到各类节点疲劳性能优劣次序为PBL加劲型矩形钢管混凝土焊接整体节点、PBL加劲型矩形钢管混凝土等宽节点、矩形钢管混凝土等宽节点、矩形空管等宽节点、圆形钢管混凝土节点、圆形空管节点、主方支圆钢管混凝土节点、主方支圆空管节点。
Abstract:
Taking the concrete-filled steel tube composite truss bridge as the research object, the fatigue evaluation process of the joints of the concrete-filled steel tube composite truss bridge based on the hot spot stress method was summarized, and the structural details of fatigue control joints of concrete filled steel tube composite truss bridge were studied. The results show that, through filling the main tube with concrete, the maximum stress amplitude of rectangular equal width branch and main tube is reduced by 10.86% and 26.51% respectively, and the fatigue life of the joints is increased by 3.78 times; the circular tubular joints, the maximum stress amplitude of branch and main tube is reduced by 13.88% and 16.39% respectively, and the fatigue life of the joints is increased by 2.11 times; the joint with square main tube and circular branch tube, the maximum stress amplitude of branch and main tube is reduced by 20.06% and 29.81% respectively, and the fatigue life of the joint is increased by 1.92 times. For rectangular steel tube joints, PBL stiffeners are set on the basis of concrete filled in the main tube, and integral gusset plate is used. As a result, the maximum hot spot stress amplitude of the branch tube further decreases by 12.11% and 29.20%, and the maximum hot spot stress amplitude of the main tube further decreases by 8.81% and 15.64%. Therefore, by improving the fatigue details of the joint composed of rectangular steel tubes of equal width, the stress distribution at the welded joint is more uniform and the fatigue life is significantly improved. At the same time, based on the premise of equal axial stiffness of the branch and main tube members, the order of the fatigue performance of the structural details of joints is as follows: the PBL stiffened concrete filled rectangular steel tube integral joint, the PBL stiffened concrete filled rectangular steel tube equal-width joint, the concrete filled rectangular steel tube equal-width joint, the rectangular steel tube equal-width joint, the concrete filled circular steel tube joint, the circular steel tube joint, the joint with concrete filled square main tube and circular branch tube, the joint with square main tube and circular branch tube.

参考文献/References:

[1] HAN L H,LI W,BJORHOVDE R.Developments and Advanced Applications of Concrete-filled Steel Tubular(CFST)Structures:Members[J].Journal of Constructional Steel Research,2014,100:211-228.
[2]刘永健,马印平,田智娟,等.矩形钢管混凝土组合桁梁连续刚构桥实桥试验[J].中国公路学报,2018,31(5):53-62.
LIU Yong-jian,MA Yin-ping,TIAN Zhi-juan,et al.Field Test of Rectangular Concrete Filled Steel Tubular Composite Truss Bridge with Continuous Rigid System[J].China Journal of Highway and Transport,2018,31(5):53-62.
[3]高诣民,刘永健,周绪红,等.高性能钢管混凝土组合桁梁桥[J].中国公路学报,2018,31(12):174-187.
GAO Yi-min,LIU Yong-jian,ZHOU Xu-hong,et al.High-performance CFST Composite Truss Bridge[J].China Journal of Highway and Transport,2018,31(12):174-187.
[4]TIAN Z J,LIU Y J,JIANG L,et al.A Review on Application of Composite Truss Bridges Composed of Hollow Structural Section Members[J].Journal of Traffic and Transportation Engineering:English Edition,2019,6(1):94-108.
[5]周绪红,刘永健,姜 磊,等.PBL加劲型矩形钢管混凝土结构力学性能研究综述[J].中国公路学报,2017,30(11):45-62.
ZHOU Xu-hong,LIU Yong-jian,JIANG Lei,et al.Review on Mechanical Behavior Research of Concrete Filled Rectangular Hollow Section Tube Stiffened with PBL[J].China Journal of Highway and Transport,2017,30(11):45-62.
[6]刘永健,姜 磊,王康宁.焊接管节点疲劳研究综述[J].建筑科学与工程学报,2017,34(5):1-20.
LIU Yong-jian,JIANG Lei,WANG Kang-ning.Review of Fatigue Behavior in Welded Tubular Joints[J].Journal of Architecture and Civil Engineering,2017,34(5):1-20.
[7]WEI X,WEN Z Y,XIAO L,et al.Review of Fatigue Assessment Approaches for Tubular Joints in CFST Trusses[J].International Journal of Fatigue,2018,113:43-53.
[8]刘永健,姜 磊,熊治华,等.PBL加劲型矩形钢管混凝土受拉节点热点应力集中系数计算方法[J].交通运输工程学报,2017,17(5):1-15.
LIU Yong-jian,JIANG Lei,XIONG Zhi-hua,et al.Hot Spot SCF Computation Method of Concrete-filled and PBL-stiffened Rectangular Hollow Section Joint Subjected to Axial Tensions[J].Journal of Traffic and Transportation Engineering,2017,17(5):1-15.
[9]CIDECT 8,Design Guide for Circular and Rectangular Hollow Section Welded Joints Under Fatigue Loading[S].
[10]MASHIRI F R,ZHAO X L.Square Hollow Section(SHS)T-joints with Concrete-filled Chords Subjected to In-plane Fatigue Loading in the Brace[J].Thin-walled Structures,2010,48(2):150-158.
[11]刘永健,姜 磊,熊治华,等.PBL加劲型矩形钢管混凝土受拉节点热点应力集中系数计算方法[J].交通运输工程学报,2017,17(5):1-15.
LIU Yong-jian,JIANG Lei,XIONG Zhi-hua,et al.Hot Spot SCF Computation Method of Concrete-filled and PBL-stiffened Rectangular Hollow Section Joint Subjected to Axial Tensions[J].Journal of Traffic and Transportation Engineering,2017,17(5):1-15.
[12]LIU Y J,XIONG Z H,FENG Y C,et al.Concrete-filled Rectangular Hollow Section X Joint with Perfobond Leister Rib Structural Performance Study:Ultimate and Fatigue Experimental Investigation[J].Steel and Composite Structures,2017,24(4):455-465.
[13]JIANG L,LIU Y J,FAM A.Stress Concentration Factors in Joints of Square Hollow Section(SHS)Brace and Concrete-filled SHS Chord Under Axial Tension in Brace[J].Thin-walled Structures,2018,132:79-92.
[14]JIANG L,LIU Y J,FAM A.Stress Concentration Factors in Concrete-filled Square Hollow Section Joints with Perfobond Ribs[J].Engineering Structures,2019,181:165-180.
[15]JIANG L,LIU Y J,FAM A,et al.Fatigue Behaviour of Non-integral Y-joint of Concrete-filled Rectangular Hollow Section Continuous Chord Stiffened with Perfobond Ribs[J].Engineering Structures,2019,191:611-624.
[16]JIANG L,LIU Y J,FAM A,et al.Stress Concentration Factor Parametric Formulae for Concrete-filled Rectangular Hollow Section K-joints with Perfobond Ribs[J].Journal of Constructional Steel Research,2019,160:579-597.
[17]程 高,刘永健,邱洁霖,等.PBL加劲型矩形钢管混凝土不等宽T型节点应力集中系数分析[J].建筑科学与工程学报,2014,31(4):74-79.
CHENG Gao,LIU Yong-jian,QIU Jie-lin,et al.Analysis of Stress Concentration Factor on Concrete-filled Rectangular Steel Tube T-joints Stiffened with PBL[J].Journal of Architecture and Civil Engineering,2014,31(4):74-79.
[18]WANG K,TONG L W,ZHU J,et al.Fatigue Behavior of Welded T-joints with a CHS Brace and CFCHS Chord Under Axial Loading in the Brace[J].Journal of Bridge Engineering,2013,18(2):142-152.
[19]CHEN J,CHEN J,JIN W L.Experiment Investigation of Stress Concentration Factor of Concrete-filled Tubular T-joints[J].Journal of Constructional Steel Research,2010,66(12):1510-1515.
[20]UDOMWORARAT P,MIKI C,ICHIKAWA A,et al.Fatigue and Ultimate Strengths of Concrete Filled Tubular K-joints on Truss Girder[J].Journal of Structural Engineering,2000,46(A):1627-1635.
[21]XU F,CHEN J,JIN W L.Experimental Investigation of SCF Distribution for Thin-walled Concrete-filled CHS Joints Under Axial Tension Loading[J].Thin-walled Structures,2015,93:149-157.
[22]KIM I G,CHUNG C H,SHIM C S,et al.Stress Concentration Factors of N-joints of Concrete-filled Tubes Subjected to Axial Loads[J].International Journal of Steel Structures,2014,14(1):1-11.
[23]TONG L W,XU G W,YANG D L,et al.Fatigue Behavior and Design of Welded Tubular T-joints with CHS Brace and Concrete-filled Chord[J].Thin-walled Structures,2017,120:180-190.
[24]TONG L W,XU G W,YANG D L,et al.Stress Concentration Factors in CHS-CFSHS T-joints:Experiments,FE Analysis and Formulae[J].Engineering Structures,2017,151:406-421.
[25]姜 磊,刘永健,王康宁.焊接管节点结构形式发展及疲劳性能对比[J].建筑结构学报,2019,40(3):184-191.
JIANG Lei,LIU Yong-jian,WANG Kang-ning.Development of Welded Tubular Joints and Comparison of Fatigue Behaviour[J].Journal of Building Structures,2019,40(3):180-191.
[26]BS EN 1993-1-9-2005,Eurcode 3:Design of Steel Structures - Part 1-9:Fatigue[S].

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-09-15
基金项目:国家自然科学基金项目(51778058,51378068); 中央高校基本科研业务费专项资金项目(300102219310)
作者简介:刘永健(1966-),男,江西玉山人,教授,博士研究生导师,工学博士,E-mail:liuyongjian@chd.edu.cn。
更新日期/Last Update: 2020-10-15