|本期目录/Table of Contents|

[1]韦建刚,周 俊,杨 艳,等.钢管超高强混凝土柱拟静力试验[J].建筑科学与工程学报,2020,37(05):62-69.[doi:10.19815/j.jace.2020.09045]
 WEI Jian-gang,ZHOU Jun,YANG Yan,et al.Quasi-static Test on Ultra-high Strength Concrete Filled Steel Tube Columns[J].Journal of Architecture and Civil Engineering,2020,37(05):62-69.[doi:10.19815/j.jace.2020.09045]
点击复制

钢管超高强混凝土柱拟静力试验(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年05期
页码:
62-69
栏目:
出版日期:
2020-09-30

文章信息/Info

Title:
Quasi-static Test on Ultra-high Strength Concrete Filled Steel Tube Columns
文章编号:
1673-2049(2020)05-0062-08
作者:
韦建刚1,2,周 俊1,杨 艳1,陈宝春1
1. 福州大学 土木工程学院,福建 福州 350108; 2. 福建工程学院 土木工程学院,福建 福州 350118
Author(s):
WEI Jian-gang1,2, ZHOU Jun1, YANG Yan1, CHEN Bao-chun1
1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, Fujian, China; 2. School of Civil Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, China
关键词:
钢管 超高强混凝土 拟静力试验 抗震性能 极限弯矩
Keywords:
steel tube ultra-high strength concrete quasi-static test seismic performance ultimate bending moment
分类号:
TU398.9
DOI:
10.19815/j.jace.2020.09045
文献标志码:
A
摘要:
以轴压比、含钢率和长径比为参数,进行了11根钢管超高强混凝土柱拟静力试验,分析了试件荷载-位移滞回曲线、骨架曲线、延性、耗能以及强度和刚度退化等抗震性能指标。结果表明:随着轴压比增大,极限承载能力和延性降低,试件耗能能力减弱,强度和刚度退化程度增强; 随着含钢率增大,弹性刚度、极限承载力以及延性呈增大趋势,耗能能力增强,强度和刚度退化程度减弱; 随着长径比增大,弹性刚度、极限承载力以及延性都呈减小趋势,整体耗能能力减弱,强度和刚度退化程度增强; 受适用材料范围的限制,目前规程中的抗弯刚度和极限弯矩计算方法并不适用于钢管超高强混凝土结构,计算结果偏差较大,有必要对其进行适当修正,以期适用于该类结构抗弯刚度和极限弯矩计算。
Abstract:
Taking axial compression ratio, steel ratio and aspect ratio as experimental parameters, quasi-static tests on eleven ultra-high strength concrete filled steel tubular(UCFST)columns were carried out, and load-displacement hysteretic curve, skeleton curve, as well as the seismic performance indexes such as ductility, energy consumption, strength and stiffness degradation were analyzed. The results show that with the increase of axial compression ratio, the ultimate bearing capacity and the ductility of the specimens decrease, the overall energy dissipation capacity also decreases, and the degradation in strength and stiffness is substantial. As steel ratio increases, the elastic stiffness and ultimate bearing capacity as well as the ductility can be improved, meanwhile the energy dissipation capacity increases, degradation levels for strength and stiffness decrease. As aspect ratio increases, the elastic stiffness and ultimate bearing capacity as well as the ductility decrease, while the overall energy dissipation capacity also decreases, and the degradation of strength and stiffness increase. Limited to the scopes of applicable materials, the current codified flexural rigidity and ultimate bending moment calculation methods for conventional composite structural members are not suitable for UCFST structures, and the deviation of calculation results are very large. It is necessary to modify them properly, so as to apply them to the flexural rigidity and ultimate bending moment calculation of UCFST structures.

参考文献/References:

[1] 陈宝春,季 韬,黄卿维,等.超高性能混凝土研究综述[J].建筑科学与工程学报,2014,31(3):1-24.
CHEN Bao-chun,JI Tao,HUANG Qing-wei,et al.Review of Research on Ultra-high Performance Concrete[J].Journal of Architecture and Civil Engineering,2014,31(3):1-24.
[2]ABBAS S,NEHDI M L,SALEEM M A.Ultra-high Performance Concrete:Mechanical Performance,Durability,Sustainability and Implementation Challenges[J].International Journal of Concrete Structures and Materials,2016,10(3):271-295.
[3]陈宝春,黄卿维,王远洋,等.中国第一座超高性能混凝土(UHPC)拱桥的设计与施工[J].中外公路,2016,36(1):67-71.
CHEN Bao-chun,HUANG Qing-wei,WANG Yuan-yang,et al.Design and Construction of China’s First Ultra-high Performance Concrete(UHPC)Arch Bridge[J].Journal of China & Foreign Highway,2016,36(1):67-71.
[4]LOPEZ J A,SERNA P,CAMACHO E,et al.First Ultra-high-performance Fibre-reinforced Concrete Footbridge in Spain:Design and Construction[J].Structural Engineering International,2014,24(1):101-104.
[5]XUE J Q,BRISEGHELLA B,HUANG F Y,et al.Review of Ultra-high Performance Concrete and Its Application in Bridge Engineering[J].Construction and Building Materials,2020,260:1-12.
[6]林震宇,吴炎海,沈祖炎.圆钢管活性粉末混凝土轴压力学性能研究[J].建筑结构学报,2005,26(4):52-57.
LIN Zhen-yu,WU Yan-hai,SHEN Zu-yan.Research on Behavior of RPC Filled Circular Steel Tube Column Subjected to Axial Compression[J].Journal of Building Structures,2005,26(4):52-57.
[7]XIONG M X,XIONG D X,LIEW J Y R.Axial Performance of Short Concrete Filled Steel Tubes with High- and Ultra-high-strength Materials[J].Engineering Structures,2017,136:494-510.
[8]韦建刚,罗 霞,欧智菁,等.圆高强钢管超高性能混凝土短柱轴压性能试验研究[J].建筑结构学报,2020,41(11):16-28.
WEI Jian-gang,LUO Xia,OU Zhi-jing,et al.Experimental Study on Axial Compressive Behavior of Circular UHPC Filled High-strength Steel Tube Short Columns[J].Journal of Building Structures,2020,41(11):16-28.
[9]韦建刚,罗 霞,谢志涛.圆高强钢管超高性能混凝土轴压柱稳定性能试验研究[J].建筑结构学报,2019,40(增):200-206.
WEI Jian-gang,LUO Xia,XIE Zhi-tao.Stability of Ultra-high Performance Concrete Filled High-strength Steel Tube Columns Subjected to Axial Load[J].Journal of Building Structures,2019,40(S):200-206.
[10]WEI J G,ZHOU J,HUANG J N,et al.Experimental Study on the Cyclic Behavior of Ultra High Performance Concrete-filled Steel Tube Beam-columns[J].Advances in Structural Engineering,2020,23(5):969-978.
[11]WANG J T,SUN Q,LI J X.Experimental Study on Seismic Behavior of High-strength Circular Concrete-filled Thin-walled Steel Tubular Columns[J].Engineering Structures,2019,182:403-415.
[12]VARMA A H,RICLES J M,SAUSE R,et al.Seismic Behavior and Modeling of High-strength Composite Concrete-filled Steel Tube(CFT)Beam-columns[J].Journal of Constructional Steel Research,2002,58(5):725-758.
[13]MAO X Y,XIAO Y.Seismic Behavior of Confined Square CFT Columns[J].Engineering Structures,2006,28(10):1378-1386.
[14]HAN L H,YANG Y F,TAO Z.Concrete-filled Thin-walled Steel SHS and RHS Beam-columns Subjected to Cyclic Loading[J].Thin-walled Structures,2003,41(9):801-833.
[15]HAN L H,YANG Y F.Cyclic Performance of Concrete-filled Steel CHS Columns Under Flexural Loading[J].Journal of Constructional Steel Research,2005,61(4):423-452.
[16]袁辉辉,吴庆雄,陈宝春,等.平缀管式等截面钢管混凝土格构柱抗震性能试验与有限元分析[J].工程力学,2016,33(10):226-235.
YUAN Hui-hui,WU Qing-xiong,CHEN Bao-chun,et al.Aseismic Performance Test and FEM Analysis of Uniform Sectional CFST Lattice Column with Flat Lacing Tubes[J].Engineering Mechanics,2016,33(10):226-235.
[17]吕银花.平缀管式等截面钢管混凝土格构柱滞回性能研究[D].福州:福州大学,2015.
LV Yin-hua.Studies on Hysteretic Behavior of Uniform Section Concrete Filled Steel Tubular Laced Columns with Flat Lacing Tube[D].Fuzhou:Fuzhou University,2015.
[18]ACI 318-08,Building Code Requirements for Structural Concrete and Commentary[S].
[19]BS 5400:2005,Steel,Concrete and Composite Bridges.Part 5:Code of Practice for Design of Composite Bridges[S].
[20]ANSI/AISC 360-05,Specification for Structural Steel Buildings[S].
[21]EN 1994-1-1:2004,Eurocode 4:Design of Composite Steel and Concrete Structures.Part 1.1:General Rules and Rules for Buildings[S].
[22]GB 50936-2014,钢管混凝土结构技术规范[S].
GB 50936-2014,Technical Code for Concrete Filled Steel Tubular Structures[S].

相似文献/References:

[1]肖建庄,刘 胜,TRESSERRAS Joan.钢管/GFRP管约束再生混凝土柱偏心受压试验[J].建筑科学与工程学报,2015,32(02):21.
 XIAO Jian-zhuang,LIU Sheng,TRESSERRAS Joan.Eccentric Loading Test on Recycled Aggregate Concrete Columns Confined by Steel Tube/GFRP Tube[J].Journal of Architecture and Civil Engineering,2015,32(05):21.
[2]刘永健,姜 磊,张 宁.钢管混凝土中钢管的纵向容许应力[J].建筑科学与工程学报,2015,32(06):1.
 LIU Yong-jian,JIANG Lei,ZHANG Ning.Longitudinal Allowable Stress of Steel Tube in Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2015,32(05):1.

备注/Memo

备注/Memo:
收稿日期:2020-09-10
基金项目:国家自然科学基金项目(51878172); 福建省高校产学合作项目(2019H6020); 福建省高校创新团队发展计划项目
作者简介:韦建刚(1971-),男,广西上思人,研究员,博士研究生导师,工学博士,博士后,E-mail:weijg@fzu.edu.cn。
通信作者:杨 艳(1979-),女,福建邵武人,副研究员,工学博士,E-mail:yangyan@fzu.edu.cn。
更新日期/Last Update: 2020-10-15