|本期目录/Table of Contents|

[1]刘嘉达仁,杨绿峰,张 伟,等.框架结构整体承载力优化设计的改进方法[J].建筑科学与工程学报,2020,37(05):170-181.[doi:10.19815/j.jace.2018.01053]
 LIU Jiadaren,YANG Lyu-feng,ZHANG Wei,et al.Improved Method for Optimal Design of Overall Bearing Capacity Optimization of Frame Structures[J].Journal of Architecture and Civil Engineering,2020,37(05):170-181.[doi:10.19815/j.jace.2018.01053]
点击复制

框架结构整体承载力优化设计的改进方法(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年05期
页码:
170-181
栏目:
出版日期:
2020-09-30

文章信息/Info

Title:
Improved Method for Optimal Design of Overall Bearing Capacity Optimization of Frame Structures
文章编号:
1673-2049(2020)05-0161-09
作者:
刘嘉达仁1,2,杨绿峰1,张 伟1,冯瑛琪3
1. 广西大学 工程防灾与结构安全教育部重点实验室,广西 南宁 530004; 2. 阿尔伯塔大学 土木与环境工程学院,阿尔伯塔 埃德蒙顿 T6G1H9; 3. 广西建设职业技术学院,广西 南宁 530003
Author(s):
LIU Jiadaren1,2, YANG Lyu-feng1, ZHANG Wei1, FENG Ying-qi3
1. Key Laboratory of Engineering Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China; 2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G1H9, Alberta,
关键词:
整体承载力 强化迭代系数 优化设计 弹性模量缩减法
Keywords:
overall bearing capacity enhanced iteration coefficient optimal design elastic modulus reduction method
分类号:
TU318
DOI:
10.19815/j.jace.2018.01053
文献标志码:
A
摘要:
为解决框架结构整体承载力优化设计方面存在的问题,建立了多内力组合下矩形和工字形截面几何参数的调整方法,并通过引入强化迭代系数提出了框架结构整体承载力优化设计的改进方法。首先,通过弹性模量缩减法分析框架结构在组合内力下的损伤演化过程,据此确定框架结构在构件和整体2个层面的承载力需求。然后提出了强化迭代系数并确定了其取值,据此调整构件截面强度,建立了结构整体承载力优化设计的加速迭代格式,其可保证框架结构在构件和整体2个层面上的安全性需求并优化结构耗材。同时,为实现截面强度调整在结构计算模型中的更新,建立了多内力组合作用下矩形和工字形截面几何参数调整公式,可根据截面强度调整需求进行截面几何参数的调整。最后,通过与满应力优化准则法对比分析验证了所提方法的合理性。结果表明:采用构件截面几何参数调整方法和加速迭代格式,强化迭代系数取1.001~1.020时,所提方法迭代收敛速度快,且能够获得承载性能和经济性能均优的框架优化设计方案。
Abstract:
In order to solve the problems existing in the optimal design of the overall bearing capacity of frame structures, the adjustment method of geometric parameters of rectangular and I-shaped sections under the combination of multiple internal forces was studied and established. By introducing the enhanced iteration coefficient, an improved method for the optimal design of overall bearing capacity of frame structure was proposed. Firstly, the damage evolution process of the frame structure under the combined internal force was analyzed by the elastic modulus reduction method, and the bearing capacity requirements of the frame structure at both the component and the overall level were determined. Then, the enhanced iteration coefficient was put forward and the value was determined, and the section strength was adjusted accordingly. The accelerated iterative scheme for the optimization design of the overall bearing capacity of the structure was established, which could ensure the safety requirements of the frame structure at both the component level and the overall level, and optimized the structural consumables. At the same time, in order to update the section strength adjustment in the structural calculation model, the geometric parameters adjustment formulas of rectangular and I-shaped sections under the combined action of multiple internal forces were established, which could be used to adjust the geometric parameters of cross-section according to the requirements of section strength adjustment. Finally, the rationality of the proposed method was verified by comparing with the full stress optimization criterion method. The results show that using the method of adjusting the geometric parameters of the member section and the accelerated iterative scheme, the convergence speed of the proposed method is fast when the enhanced iteration coefficient is 1.001-1.020, and the optimal design scheme of the frame with excellent bearing performance and economic performance can be obtained.

参考文献/References:

[1] PATNAIK S N,HOPKINS D A.Optimality of a Fully Stressed Design[J].Computer Methods in Applied Mechanics and Engineering,1998,165(1/2/3/4):215-221.
[2]MAKRIS P A,PROVATIDIS C G.Weight Minimisation of Displacement-constrained Truss Structures Using a Strain Energy Criterion[J].Computer Methods in Applied Mechanics and Engineering,2002,191(19/20):2187-2205.
[3]KHOSRAVI P,GANESAN R,SEDAGHATI R.Optimization of Thin-walled Structures with Geometric Nonlinearity for Maximum Critical Buckling Load Using Optimality Criteria[J].Thin-walled Structures,2008,46(12):1319-1328.
[4]O’BRIEN E J,DIXON A S.Optimal Plastic Design of Pitched Roof Frames for Multiple Loading[J].Computers & Structures,1997,64(1/2/3/4):737-740.
[5]KALISZKY S,LOGO J.Optimal Design of Elasto-plastic Structures Subjected to Normal and Extreme Loads[J].Computers & Structures,2006,84(28):1770-1779.
[6]KHANZADI M,TAVAKKOLI S M.Optimal Plastic Design of Frames Using Evolutionary Structural Optimization(ESO)[J].International Journal of Civil Engineering,2011,9(3):165-170.
[7]KAVEH A,BAKHSHPOORI T,KALATEH-AHANI M.Optimum Plastic Analysis of Planar Frames Using Ant Colony System and Charged System Search Algorithms[J].Scientia Iranica,2013,20(3):414-421.
[8]杨绿峰,欧 伟,张 伟.桥梁结构两层面承载力设计与优化的策略和方法[J].中国公路学报,2016,29(7):62-71.
YANG Lu-feng,OU Wei,ZHANG Wei.Investigation on Strategy and Method of Two-level Load Carrying Capacity Design and Optimization for Bridge Structures[J].China Journal of Highway and Transport,2016,29(7):62-71.
[9]杨绿峰,李 琦,张 伟.工程结构整体承载力设计与优化的弹性模量缩减法研究[J].土木工程学报,2015,48(5):61-70.
YANG Lu-feng,LI Qi,ZHANG Wei.Elastic Modulus Reduction Method for Design and Optimization of Global Load Bearing Capacity of Engineering Structures[J].China Civil Engineering Journal,2015,48(5):61-70.
[10]朱伯芳.复杂结构满应力设计的浮动应力指数法[J].固体力学学报,1984(2):255-261.
ZHU Bo-fang.The Method of Floating Stress Exponent for the Fully Stressed Design of Complex Structures[J].Acta Mechanica Solida Sinica,1984(2):255-261.
[11]KAVEH A,TALTAHARI S.An Improved Ant Colony Optimization for the Design of Planar Steel frames[J].Engineering Structures,2010,32(3):864-873.
[12]TOGAN V.Design of Planar Steel Frames Using Teaching-learning Based Optimization[J].Engineering Structures,2012,34:225-232.
[13]MAHERI M R,NARIMANI M M.An Enhanced Harmony Search Algorithm for Optimum Design of Side Sway Steel Frames[J].Computers & Structures,2014,136:78-89.
[14]CHAN C M,GRIERSON D E.An Efficient Resizing Technique for the Design of Tall Steel Buildings Subject to Multiple Drift Constraints[J].The Structural Design of Tall and Special Buildings,1993,2(1):17-32.
[15]SAKA M P,KAMESHKI E S.Optimum Design of Nonlinear Elastic Framed Domes[J].Advances in Engineering Software,1998,29(7/8/9):519-528.
[16]张爱林,魏文豪,杨海军.预应力索-拱结构优化设计[J].钢结构,2008,23(1):24-27.
ZHANG Ai-lin,WEI Wen-hao,YANG Hai-jun.Optimal Design of Prestressed Cable-arch Structure[J].Steel Construction,2008,23(1):24-27.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-10-21
基金项目:国家自然科学基金重点项目(51738004); 国家自然科学基金项目(51478125,51469004)
作者简介:刘嘉达仁(1993-),男,山东菏泽人,工学博士研究生,E-mail:jiadaren@ualberta.ca。
通信作者:杨绿峰(1966-),男,河南鲁山人,教授,博士研究生导师,工学博士,E-mail:alfyang@foxmail.com。
更新日期/Last Update: 2020-10-15