|本期目录/Table of Contents|

[1]魏文晖,周 翔,邓 晨,等.基于能量法的下击暴流作用下输电塔线体系失效 倒塌研究[J].建筑科学与工程学报,2020,37(06):73-80.
 WEI Wen-hui,ZHOU Xiang,DENG Chen,et al.Research on Failure and Collapse of Transmission Tower Line System Under Downburst Action Based on Energy Method[J].Journal of Architecture and Civil Engineering,2020,37(06):73-80.
点击复制

基于能量法的下击暴流作用下输电塔线体系失效 倒塌研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
37卷
期数:
2020年06期
页码:
73-80
栏目:
出版日期:
2020-11-30

文章信息/Info

Title:
Research on Failure and Collapse of Transmission Tower Line System Under Downburst Action Based on Energy Method
文章编号:
1673-2049(2020)06-0073-08
作者:
魏文晖,周 翔,邓 晨,吉柏锋
武汉理工大学 道路桥梁与结构工程湖北省重点实验室,湖北 武汉 430070
Author(s):
WEI Wen-hui, ZHOU Xiang, DENG Chen, JI Bai-feng
Hubei Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
关键词:
能量法 输电塔线体系 下击暴流 动力稳定性 失效 倒塌
Keywords:
energy method transmission tower line system downburst dynamic stability failure collapse
分类号:
TU311
DOI:
-
文献标志码:
A
摘要:
对下击暴流作用下的输电塔线体系进行了基于能量法的失效倒塌分析。采用ABAQUS软件建立了 “一塔两线” 的输电塔体系有限元模型; 基于改进的OBV模型的时变平均风速模拟方法,推导并得到了输电塔及导线各节点的下击暴流风速时程曲线; 采用基于特征能量的动力稳定性判别方法对塔线体系在3个不同风速的下击暴流动力工况时的响应进行分析,确定了下击暴流作用下输电塔失效的时刻,探讨了大跨越输电塔线体系的失效倒塌机制。结果表明:采用能量法对结构体系进行分析时,最后一次特征能量超过输入能量的时刻即为结构的失效时刻; 基于能量法对下击暴流作用下的输电塔线体系进行分析,可以快速准确地判断输电塔线体系整体失稳倒塌的时刻,具有较强的工程实用价值; 在倒塌时刻,主材失稳引发的薄弱区域杆件部分失效会导致输电塔的整体失稳,最终使结构失效倒塌。
Abstract:
The failure and collapse analysis of transmission tower line system under downburst was carried out based on energy method. The finite element model of “one tower and two lines” transmission tower system was established by using ABAQUS. By using the time-varying average wind speed simulation method based on the improved OBV model, the time history curves of the downburst wind speed of each node of transmission tower and wire were derived and obtained. By usingthe dynamic stability discrimination method based on characteristic energy, the response of tower line system under three downburst dynamic conditions with different wind speeds was analyzed. The failure time of transmission tower system under downburst was determined. The failure and collapse mechanism of transmission tower system with large span was discussed. The results show that when the energy method is used to analyze the structure system, the last time when the characteristic energy exceeds the input energy is the failure time of the structure. Based on the energy method, the analysis of the transmission tower line system under the action of downburst can quickly and accurately judge the time when the whole transmission tower line system loses stability and collapses, and it has strong engineering practical value. At the moment of collapse, the failure of the members in the weak area caused by the instability of the main material will lead to the overall instability of the transmission tower, and eventually make the structure fail and collapse.

参考文献/References:

[1] JESSON M,STERLING M.A Simple Vortex Model of a Thunderstorm Downburst — A Parametric Evaluation[J].Journal of Wind Engineering and Industrial Aerodynamics,2018,174:1-9.
[2]瞿伟廉,吉柏锋.下击暴流的形成与扩散及其对输电线塔的灾害作用[M].北京:科学出版社,2013. QU Wei-lian,JI Bai-feng.Formation and Diffusion of Downburst and Its Disaster Effect on Transmission Tower[M].Beijing:Science Press,2013.
[3]方智远,李正良,汪之松.下击暴流作用下不同深宽比的高层建筑风荷载[J].东南大学学报:自然科学版,2019,49(3):489-494. FANG Zhi-yuan,LI Zheng-liang,WANG Zhi-song.Wind Loads of High-rise Buildings with Various Aspect Ratios in Downburst Wind[J].Journal of Southeast University:Natural Science Edition,2019,49(3):489-494.
[4]瞿伟廉,梁政平,王力争,等.下击暴流的特征及其对输电线塔风致倒塌的影响[J].地震工程与工程振动,2010,30(6):120-126. QU Wei-lian,LIANG Zheng-ping,WANG Li-zheng,et al.Downburst's Characteristics and Its Effect on Wind-induced Collapse of Transmission Tower[J].Earthquake Engineering and Engineering Dynamics,2010,30(6):120-126.
[5]SHEHATA A Y,EL DAMATTY A A,SAVORY E.Finite Element Modeling of Transmission Line Under Downburst Wind Loading[J].Finite Elements in Analysis and Design,2005,42(1):71-89.
[6]SHEHATA A Y,EL DAMATTY A A.Behaviour of Guyed Transmission Line Structures Under Downburst Wind Loading[J].Wind and Structures,2007,10(3):249-268.
[7]LIN W E,SAVORY E,MCINTYRE R P,et al.The Response of an Overhead Electrical Power Transmission Line to Two Types of Wind Forcing[J].Journal of Wind Engineering and Industrial Aerodynamics,2012,100(1):58-69.
[8]ABD-ELAAL E,MILLS J E,MA X.Numerical Simulation of Downburst Wind Flow over Real Topography[J].Journal of Wind Engineering and Industrial Aerodynamics,2018,172:85-95.
[9]瞿伟廉,吉柏锋,王锦文.基于改进的OBV模型的下击暴流风荷载模拟[J].地震工程与工程振动,2009,29(1):146-152. QU Wei-lian,JI Bai-feng,WANG Jin-wen.Numerical Simulation of Downburst Wind Loads Based on Modified OBV Model[J].Earthquake Engineering and Engineering Dynamics,2009,29(1):146-152.
[10]OSEGUERA R M,BOWLES R L.A Simple Analytic 3-dimensional Downburst Model Based on Boundary Layer Stagnation Flow[R].Washington DC:NASA,1988.
[11]VICROY D D.A Simple Analytic Axisymmetric Microburst Model for Downdraft Estimation[R].Washington DC:NASA,1991.
[12]HSU C S.On Dynamic Stability of Elastic Bodies with Prescribed Initial Conditions[J].International Journal of Engineering Science,1966,4(1):1-21.
[13]HSU C S.Stability of Shallow Arches Against Snap-through Under Timewise Step Loads[J].Journal of Applied Mechanics,1968,35(1):31-39.
[14]SIMITESES G J.Dynamic Snap-through Buckling of Low Arches and Shallow Spherical CAPS[D].Palo Alto:Stanford University,1965.
[15]韩 强.弹塑性系统的动力屈曲和分叉[M].北京:科学出版社,2000. HAN Qiang.Dynamic Buckling and Bifurcation of Elastoplastic Systems[M].Beijing:Science Press,2000.
[16]李 杰,徐 军.结构动力稳定性判定新准则[J].同济大学学报:自然科学版,2015,43(7):965-971. LI Jie,XU Jun.Novel Criterion for Identification of Dynamic Stability of Structures[J].Journal of Tongji University:Natural Science,2015,43(7):965-971.
[17]DL/T 5551—2018,架空输电线路荷载规范[S]. DL/T 5551—2018,Load Code for the Design of Overhead Transmission Line[S].
[18]CHEN L,LETCHFORD C W.A Deterministic-stochastic Hybrid Model of Downbursts and Its Impact on a Cantilevered Structure[J].Engineering Structures,2004,26(5):619-629.
[19]HOLMES J D,OLIVER S E.An Empirical Model of a Downburst[J].Engineering Structures,2000,22(9):1167-1172.
[20]KAIMAL J C,WYNGAARD J C,IZUMI Y,et al.Spectral Characteristics of Surface-layer Turbulence[J].Quarterly Journal of the Royal Meteorological Society,1972,98(417):563-589.
[21]吴帅帅.基于Abaqus的框架结构地震输入能量影响因素分析[D].郑州:郑州大学,2016. WU Shuai-shuai.Analysis of Influencing Factors of Input Energy During Earthquake of RC Frame Structure based on Abaqus[D].Zhengzhou:Zhengzhou University,2016.

相似文献/References:

[1]张 宁,刘永健,李 慧.PBL加劲型矩形钢管混凝土轴压柱局部屈曲性能分析[J].建筑科学与工程学报,2017,34(02):95.
 ZHANG Ning,LIU Yong-jian,LI Hui.Local Buckling Performance Analysis of Rectangular Concrete-filled Steel Tubular Axial Compression Column with PBL Stiffeners[J].Journal of Architecture and Civil Engineering,2017,34(06):95.

备注/Memo

备注/Memo:
收稿日期:2020-05-30 基金项目:国家自然科学基金项目(51678462); 中央高校基本科研业务费专项资助项目(2019-zy-125) 作者简介:魏文晖(1963-),男,湖北武汉人,教授,博士研究生导师,工学博士,E-mail:weiwenhui@whut.edu.cn。
更新日期/Last Update: 1900-01-01