|本期目录/Table of Contents|

[1]蒋建华,吴 琦,付用全,等.掺粉煤灰再生混凝土反向湿度响应规律与预测模型研究[J].建筑科学与工程学报,2021,38(05):83-90.[doi:10.19815/j.jace.2020.11037]
 JIANG Jian-hua,WU Qi,FU Yong-quan,et al.Study on Reverse Humidity Response Law and Forecast Model of Recycled Concrete Mixed with Fly Ash[J].Journal of Architecture and Civil Engineering,2021,38(05):83-90.[doi:10.19815/j.jace.2020.11037]
点击复制

掺粉煤灰再生混凝土反向湿度响应规律与预测模型研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年05期
页码:
83-90
栏目:
出版日期:
2021-09-15

文章信息/Info

Title:
Study on Reverse Humidity Response Law and Forecast Model of Recycled Concrete Mixed with Fly Ash
文章编号:
1673-2049(2021)05-0083-08
作者:
蒋建华,吴 琦,付用全,眭 源,林明益
(河海大学 土木与交通学院,江苏 南京 210024)
Author(s):
JIANG Jian-hua, WU Qi, FU Yong-quan, SUI Yuan, LIN Ming-yi
(College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, Jiangsu, China)
关键词:
再生混凝土 粉煤灰 抗压强度 反向湿度响应 预测模型
Keywords:
recycled concrete fly ash compressive strength reverse humidity response prediction model
分类号:
TU973.2
DOI:
10.19815/j.jace.2020.11037
文献标志码:
A
摘要:
在模拟人工气候环境条件下,开展了再生粗骨料取代率和粉煤灰掺量对再生混凝土力学性能及其在干燥过程中反向湿度响应的影响研究。基于传质学的相关理论,提出了粉煤灰再生混凝土反向湿度响应的预测模型并验证了其可行性。试验结果表明:混凝土28 d抗压强度随着再生粗骨料取代率和粉煤灰掺量的增大均呈现先增大后减小的趋势; 粉煤灰掺量一定时,再生粗骨料取代率为25%的混凝土抗压强度达到最大; 再生粗骨料取代率一定时,粉煤灰掺量(质量分数)为10%的抗压强度最大; 在同一反向湿度响应时刻,再生粗骨料取代率为25%时混凝土反向湿度响应速率最低,取代率为0%,50%,75%,100%的混凝土湿度响应速率依次增大; 粉煤灰掺量为10%的混凝土反向湿度响应速率最低,掺量为0%,20%和30%的湿度响应速率依次增大; 在反向湿度响应的早期,2种影响因素对混凝土的反向响应速率影响更大; 随着湿度响应的进行,影响逐渐减小,且随着粉煤灰掺量的增大,不同时间段的反向湿度响应速率差距逐渐增大。
Abstract:
The effects of the replacement rate of recycled coarse aggregate and fly ash content on the mechanical properties of recycled concrete and its reverse humidity response in the drying process were studied under simulated artificial climate conditions. Based on the relevant theories of mass transfer, a prediction model of the reverse humidity response of fly ash recycled concrete was proposed and its feasibility was verified. The test results show that the 28 d compressive strength of concrete increases firstly and then decreases with the increase of the replacement rate of recycled coarse aggregate and the content of fly ash. When the fly ash content is constant, the compressive strength of concrete with the replacement rate of recycled coarse aggregate of 25% reaches the maximum. When the replacement rate of recycled coarse aggregate is constant, the compressive strength of fly ash content of 10% is the maximum. At the same time of reverse humidity response, when the replacement rate of recycled coarse aggregate is 25%, the concrete reverse humidity response rate is the lowest, and the replacement rate of 0%, 50%, 75% and 100% increases successively. Concrete with fly ash content of 10% has the lowest humidity response rate, while those with content of 0%, 20% and 30% increase in turn. In the early stage of the reverse humidity response, the two influencing factors have greater influence on the reverse response rate of concrete. With the development of humidity response, the influence is gradually smaller. In addition, with the increase of fly ash content, the difference of the reverse humidity response rate in different time periods gradually increases.

参考文献/References:

[1] 卢 黔.再生混凝土研究现状及展望[J].四川建材,2016,42(2):20-21.
LU Qian.The Current Situation and Prospects of Recycled Concrete[J].Sichuan Building Materials,2016,42(2):20-21.
[2]陈云钢,肖建庄,孙振平.再生粗骨料混凝土耐久性试验研究[J].安徽工业大学学报:自然科学版,2013,30(3):280-284.
CHEN Yun-gang,XIAO Jian-zhuang,SUN Zhen-ping.Experimental Study on the Durability of Recycled Coarse Aggregate Concrete[J].Journal of Anhui University of Technology:Natural Science,2013,30(3):280-284.
[3]李 恒,郭庆军,王家滨,等.再生混凝土界面结构及耐久性综述[J].材料导报,2020,34(7):13050-13057.
LI Heng,GUO Qing-jun,WANG Jia-bin,et al.Meso-/Micro-structure of Interfacial Transition Zone and Durability of Recycled Aggregate Concrete:A Review[J].Materials Reports,2020,34(7):13050-13057.
[4]张晓华,孟云芳,张仕林.再生粗骨料生产工艺基本研究[J].价值工程,2015(33):117-119.
ZHANG Xiao-hua,MENG Yun-fang,ZHANG Shi-lin.Study on Basic Production Technology of Recycled Coarse Aggregate[J].Value Engineering,2015(33):117-119.
[5]尹志刚,张 恺,范 巍,等.不同冻融介质作用下再生骨料透水混凝土耐久性试验研究[J].硅酸盐通报,2019,38(7):2137-2143.
YIN Zhi-gang,ZHANG Kai,FAN Wei,et al.Experimental Study on the Durability of Recycled Aggregate Pervious Concrete Under Different Freeze-thaw Media Conditions[J].Bulletin of the Chinese Ceramic Society,2019,38(7):2137-2143.
[6]何晓莹,王瑞骏,陶 喆,等.低掺量粉煤灰再生混凝土抗冻耐久性试验研究[J].硅酸盐通报,2018,37(11):3522-3527.
HE Xiao-ying,WANG Rui-jun,TAO Zhe,et al.Experimental Study on Frost-resistant Durability of Recycled Concrete with Low Content of Fly Ash[J].Bulletin of the Chinese Ceramic Society,2018,37(11):3522-3527.
[7]李建沛.锂渣再生混凝土强度及耐久性试验研究[J].新型建筑材料,2018(4):67-69,80.
LI Jian-pei.Experimental Research on Strength and Durability of Recycled Aggregate Concrete with Lithium Slag.[J].New Building Materials,2018(4):67-69,80.
[8]洪 雷,马腾龙,王苏岩.湿热环境下预应力CFRP加固高强混凝土的耐久性[J].建筑科学与工程学报,2017,34(1):25-31.
HONG Lei,MA Teng-long,WANG Su-yan.Durability of High Strength Concrete Strengthened with Prestressed CFRP Under Wet-thermal Environments[J].Journal of Architecture and Civil Engineering,2017,34(1):25-31.
[9]高 原,张 君,孙 伟.干湿循环下混凝土湿度与变形的测量[J].清华大学学报:自然科学版,2012,52(2):144-149.
GAO Yuan,ZHANG Jun,SUN Wei.Concrete Deformation and Interior Humidity During Dry-wet Cycles[J].Journal of Tsinghua University:Science and Technology,2012,52(2):144-149.
[10]戚彦福,唐先习,孙拴虎,等.基于不同风速的混凝土干缩特性及内部相对湿度试验研究[J].水利与建筑工程学报,2019,17(5):118-122,233.
QI Yan-fu,TANG Xian-xi,SUN Shuan-hu,et al.Dry Shrinkage and Internal Relative Humidity of Concrete Based on the Wind Speed Conditions[J].Journal of Water Resources and Architectural Engineering,2019,17(5):118-122,233.
[11]蒋建华,袁迎曙,王嵩林,等.人工气候环境下混凝土内相对湿度响应预测[J].中南大学学报:自然科学版,2013,44(12):5091-5099.
JIANG Jian-hua,YUAN Ying-shu,WANG Song-lin,et al.Prediction of Response of Relative Humidity in Concrete Under Artificial Climate Environment[J].Journal of Central South University:Science and Technology,2013,44(12):5091-5099.
[12]常洪雷,金祖权,刘 健.自干燥及水分扩散引起的高性能混凝土内部湿度演变[J].材料导报,2019,33(7):2370-2375.
CHANG Hong-lei,JIN Zu-quan,LIU Jian.Relative Humidity Evolution of High Performance Concrete Caused by Self-desiccation and Moisture Diffusion[J].Materials Reports,2019,33(7):2370-2375.
[13]APARICIO S,HERNANDEZ M G,ANAYA J J.Influence of Environmental Conditions on Concrete Manufactured with Recycled and Steel Slag Aggregates at Early Ages and Long Term[J].Construction and Building Materials,2020,249:118739.
[14]LIU P,SONG L,YU Z.Quantitative Moisture Model of Interior Concrete in Structures Exposed to Natural Weather[J].Construction and Building Materials,2016,102:76-83.
[15]王绎景,李 珠,秦 渊,等.再生骨料替代率对混凝土抗压强度影响的研究[J].混凝土,2018(12):27-30,33.
WANG Yi-jing,LI Zhu,QIN Yuan,et al.Effect of Replacement Rate of Recycled Coarse Aggregate on Compressive Strength of Concrete[J].Concrete,2018(12):27-30,33.
[16]刘 婷,刘京红,张仕桦,等.粉煤灰掺量和再生骨料替代率对再生混凝土强度影响研究[J].河北农业大学学报,2020,43(1):148-152.
LIU Ting,LIU Jing-hong,ZHANG Shi-hua,et al.Study on the Effect of Fly Ash Content and Recycled Aggregate Substitution Rate on the Strength of Recycled Concrete[J].Journal of Hebei Agricultural University,2020,43(1):148-152.
[17]张 鑫.再生混凝土内部微环境与外部环境的响应关系[D].徐州:中国矿业大学,2016.
ZHANG Xin.Response Relationship Between the Micro Environment and the External Environment of Recycled Concrete[D].Xuzhou:China University of Mining and Technology,2016.
[18]陈 卓,周 萍,梅 炽.传递过程原理[M].长沙:中南大学出版社,2011.
CHEN Zhuo,ZHOU Ping,MEI Chi.Principle of Transport Processes[M].Changsha:Central South University Press,2011.
[19]赵 品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社,2016.
ZHAO Pin,XIE Fu-zhou,SUN Zhen-guo.Fundamentals of Materials and Science Course[M].Harbin:Harbin Institute of Technology Press,2016.

相似文献/References:

[1]丁发兴,方常靖,龚永智,等.再生混凝土单轴力学性能指标统一计算方法[J].建筑科学与工程学报,2014,31(04):16.
 DING Fa-xing,FANG Chang-jing,GONG Yong-zhi,et al.Unified Calculation Method of Uniaxial Mechanical Performance Index of Recycled Concrete[J].Journal of Architecture and Civil Engineering,2014,31(05):16.
[2]丁 陶,肖建庄.基于振动台试验的预制再生混凝土框架后浇边节点分析[J].建筑科学与工程学报,2013,30(03):78.
 DING Tao,XIAO Jian-zhuang.Analysis of Cast-in-situ Exterior Joints of Precast Recycled Aggregate Concrete Frame by Shaking Table Tests[J].Journal of Architecture and Civil Engineering,2013,30(05):78.
[3]肖建庄,郑世同,王 静.再生混凝土长龄期强度与收缩徐变性能[J].建筑科学与工程学报,2015,32(01):21.
 XIAO Jian-zhuang,ZHENG Shi-tong,WANG Jing.Long-term Strength, Shrinkage and Creep Properties of Recycled Aggregate Concrete[J].Journal of Architecture and Civil Engineering,2015,32(05):21.
[4]肖建庄,刘 胜,TRESSERRAS Joan.钢管/GFRP管约束再生混凝土柱偏心受压试验[J].建筑科学与工程学报,2015,32(02):21.
 XIAO Jian-zhuang,LIU Sheng,TRESSERRAS Joan.Eccentric Loading Test on Recycled Aggregate Concrete Columns Confined by Steel Tube/GFRP Tube[J].Journal of Architecture and Civil Engineering,2015,32(05):21.
[5]谢建和,李自坚,孙明炜.硅粉对纤维橡胶再生混凝土抗压性能影响试验[J].建筑科学与工程学报,2016,33(03):72.
 XIE Jian-he,LI Zi-jian,SUN Ming-wei.Experiment About Influence of Silica Fume on Compressive Performance of Fiber Reinforced Rubber Recycled Concrete[J].Journal of Architecture and Civil Engineering,2016,33(05):72.
[6]肖建庄,李宏,亓萌.基于静载强度分布的再生混凝土疲劳强度预测[J].建筑科学与工程学报,2010,27(04):7.
 XIAO Jian-zhuang,LI Hong,QI Meng.Fatigue Strength Prediction of Recycled Aggregate ConcreteBased on Static Strength Distribution[J].Journal of Architecture and Civil Engineering,2010,27(05):7.
[7]陈峰,郑建岚.自密实混凝土自由收缩试验[J].建筑科学与工程学报,2011,28(02):28.
 CHEN Feng,ZHENG Jian-lan.Experiment on Free Shrinkage of Self-compacting Concrete[J].Journal of Architecture and Civil Engineering,2011,28(05):28.
[8]肖建庄,朱永明,王璞瑾,等.再生混凝土U型叠合梁抗剪性能[J].建筑科学与工程学报,2012,29(02):1.
 XIAO Jian-zhuang,ZHU Yong-ming,WANG Pu-jin,et al.Shear Behavior of Recycled Concrete U-shaped Composite Beams[J].Journal of Architecture and Civil Engineering,2012,29(05):1.
[9]胡红梅,宋明辉,姚志雄,等.提高海工混凝土抗氯离子渗透性的关键技术[J].建筑科学与工程学报,2009,26(01):7.
 HU Hong-mei,SONG Ming-hui,YAO Zhi-xiong,et al.Key Technology for Improving Resistance Against Chloride Ion Penetration of Marine Concrete[J].Journal of Architecture and Civil Engineering,2009,26(05):7.
[10]肖建庄,黄运标,郑永朝.高温后再生混凝土的残余抗折强度[J].建筑科学与工程学报,2009,26(03):32.
 XIAO Jian-zhuang,HUANG Yun-biao,ZHENG Yong-chao.Residual Flexural Strength of Recycled ConcreteAfter Elevated-temperatures[J].Journal of Architecture and Civil Engineering,2009,26(05):32.
[11]肖建庄,陈祥磊,李 标,等.纳米SiO2和粉煤灰复掺对再生混凝土性能的影响[J].建筑科学与工程学报,2020,37(01):26.[doi:10.19815/j.jace.2019.03027]
 XIAO Jian-zhuang,CHEN Xiang-lei,LI Biao,et al.Effect of Mixed Nano-SiO2 and Fly Ash on Properties of Recycled Aggregate Concrete[J].Journal of Architecture and Civil Engineering,2020,37(05):26.[doi:10.19815/j.jace.2019.03027]

备注/Memo

备注/Memo:
收稿日期:2020-11-18
基金项目:国家自然科学基金项目(51408192); 中央高校基本科研业务费专项资金项目(B200202232)
作者简介:蒋建华(1982-),男,重庆忠县人,副教授,工学博士,E-mail:jjhzxh@hhu.edu.cn。
更新日期/Last Update: 2021-09-01