|本期目录/Table of Contents|

[1]沈 晨,章定文,张国龙,等.复掺非等长玄武岩纤维的水泥土抗拉特性分析[J].建筑科学与工程学报,2021,38(06):33-39.[doi:10.19815/j.jace.2021.09022]
 SHEN Chen,ZHANG Ding-wen,ZHANG Guo-long,et al.Analysis on Tensile Properties of Cemented Soil Compounded with Unequal Length Mixed Basalt Fiber[J].Journal of Architecture and Civil Engineering,2021,38(06):33-39.[doi:10.19815/j.jace.2021.09022]
点击复制

复掺非等长玄武岩纤维的水泥土抗拉特性分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年06期
页码:
33-39
栏目:
软土地基加固与基础工程
出版日期:
2021-11-05

文章信息/Info

Title:
Analysis on Tensile Properties of Cemented Soil Compounded with Unequal Length Mixed Basalt Fiber
文章编号:
1673-2049(2021)06-0033-07
作者:
沈 晨1,2,章定文1,2,张国龙3,宋 涛3,徐慧敏4
(1. 东南大学 交通学院,江苏 南京 211189; 2. 东南大学 道路交通工程国家级实验教学示范中心,江苏 南京 211189; 3. 安徽省水利水电勘测设计研究总院有限公司,安徽 合肥 230088; 4. 中南建筑设计院股份有限公司,湖北 武汉 430000)
Author(s):
SHEN Chen1,2, ZHANG Ding-wen1,2, ZHANG Guo-long3, SONG Tao3, XU Hui-min4
(1. School of Transportation, Southeast University, Nanjing 211189, Jiangsu, China; 2. National Demonstration Center for Experimental Road and Traffic Engineering Education, Southeast University, Nanjing 211189, Jiangsu, China; 3. Anhui Survey & Design Institute of Water Resources & Hydropower Co., Ltd, Hefei 230088, Anhui, China; 4. Central-South Architectural Design Institute Co., Ltd., Wuhan 430000, Hubei, China)
关键词:
水泥土 玄武岩纤维 抗拉强度 微观机制
Keywords:
cemented soil basalt fiber tensile strength micro-mechanism
分类号:
TU414
DOI:
10.19815/j.jace.2021.09022
文献标志码:
A
摘要:
为研究非等长玄武岩纤维复掺对水泥土抗拉强度的影响规律,选取长度为6,9,12 mm的玄武岩纤维混合复掺,开展不同长度玄武岩纤维复掺的水泥土拉伸试验和电镜扫描测试,分析纤维复掺对水泥土抗拉峰值强度、残余强度及韧性的影响规律及其微观作用机制。结果表明:玄武岩纤维复掺水泥土的应力-应变曲线均可划分为弹性变形阶段、损伤破坏阶段、残余强度阶段和最终破坏阶段4个阶段,纤维减缓了试件在损伤破坏阶段的应力损失速度; 复掺不同长度的纤维可有效提高纤维水泥土的抗拉峰值强度、残余强度和韧性; 纤维长度9 mm+12 mm按3:1混合复掺的抗拉强度、残余强度最优; 纤维在水泥土中相互搭接交错形成空间网状结构,纤维与水泥土间的锚固是其提升水泥土抗拉强度的主要机理; 纤维短时易被拔出,纤维过长会出现集束现象,影响纤维对水泥土抗拉强度的增强效果。
Abstract:
In order to investigate the influence and strengthen mechanism of unequal length mixed basalt fiber on the tensile strength of cemented soil, fibers with length of 6,9,12 mm were selected to mixed. Uniaxial tensile test and scanning electron microscope test were carried out to investigate the variation laws and the micro-mechanism of peak tensile strength, residual tensile strength and toughness of cemented soil. The results show that the tensile stress-strain curves of cemented soil with fiber can be divided into four stages: elastic deformation stage, damage and failure stage, residual strength stage and final failure stage. During the damage and failure stage, the fiber slows down the stress loss rate of cemented soil. The peak tensile strength, residual tensile strength and toughness of cemented soil can be improved effectively by adding different lengths of basalt fiber. The peak and residual tensile strengths of cemented soil with 9 mm and 12 mm length mixed by 3:1 ratio are the highest. Fibers are overlapped and staggered in cemented soil to form a spatial network structure. The anchorage between fibers and cemented soil is the main mechanism to improve the tensile strength of cemented soil. When the fiber length is short, it is easy to be pulled out, and if the fiber length is too long, there is cluster phenomenon, which affects the enhancement effect of fiber on the tensile strength of cemented soil.

参考文献/References:

[1] BROMS B B.Lime and Lime/Cement Columns[C]//MOSELEY M P,KIRSCH K.The Proceedings of Ground Improvement.London:Spon Press,2004:252-330.
[2]NGUYEN B,TAKEYAMA T,KITAZUME M.Internal Failure of Deep Mixing Columns Reinforced by a Shallow Stabilized Soil Beneath an Embankment[J].International Journal of Geosynthetics & Ground Engineering,2016,2(4):1-13.
[3]KITAZUME M,TERASHI M.The Deep Mixing Method[M].Boca Raton:CRC Press,2013
[4]唐朝生,顾 凯.聚丙烯纤维和水泥加固软土的强度特性[J].土木工程学报,2011,44(增2):5-8.
TANG Chao-sheng,GU Kai.Strength Behaviour of Polypropylene Fiber Reinforced Cement Stabilized Soft Soil[J].China Civil Engineering Journal,2011,44(S2):5-8.
[5]GUTIERREZ-ORREGO D A,GARCIA-ARISTIZABAL E F,GOMEZ-BOTERO M A.Mechanical and Physical Properties of Soil-cement Blocks Reinforced with Mineral Wool and Sisal Fiber[J].Journal of Materials in Civil Engineering,2017,29(3):04016225.
[6]KUTANAEI S S,CHOOBBASTI A J.Experimental Study of Combined Effects of Fibers and Nanosilica on Mechanical Properties of Cemented Sand[J].Journal of Materials in Civil Engineering,2016,28(6):06016001.
[7]许 巍,刘军忠,张 俊.玻璃纤维加筋水泥土耐久性试验研究[J].铁道科学与工程学报,2021,18(1):104-111.
XU Wei,LIU Jun-zhong,ZHANG Jun.Experimental Study on Durability of Glass Fiber Reinforced Cemented Soil[J].Journal of Railway Science and Engineering,2021,18(1):104-111.
[8]黄 耕.PVA纤维水泥土力学性能的试验研究[D].太原:太原理工大学,2020.
HUANG Geng.Experimental Study on Mechanical Properties of Cemented Soil Reinforced by PVA Fiber[D].Taiyuan:Taiyuan University of Technology,2020.
[9]FIORE V,SCALICI T,DI BELLA G,et al.A Review on Basalt Fibre and Its Composites[J].Composites Part B Engineering,2015,74:74-94.
[10]TABELSI H,JAMEI M,GUIRAS H,et al.Some Investigations About the Tensile Strength and the Desiccation Process of Unsaturated Clay[J].European Physical Journal Conferences,2010,6:12005.
[11]DAVIES C.Evaluation of the ST Tensile Testing Equipment for Use on Cohesive Soils Using Digital Imaging Correlation Technology[D].Newcastle:Newcastle University,2012.
[12]CONSOLI N C,VENDRUSCOLO M A,FONINI A,et al.Fiber Reinforcement Effects on Sand Considering a Wide Cementation Range[J].Geotextiles & Geomembranes,2009,27(3):167-175.
[13]STIRLING R A,HUGHES P,DAVIE C T,et al.Tensile Behaviour of Unsaturated Compacted Clay Soils — A Direct Assessment Method[J].Applied Clay Science,2015,112-113:123-133.
[14]TOLLENAAR R N,VAN PAASSEN L A,JOMMI C.Experimental Evaluation of the Effects of Pull Rate on the Tensile Behavior of a Clay[J].Applied Clay Science,2017,144:131-140.
[15]CONSOLI N C,ARCARI BASSANI M A,FESTUGATO L.Effect of Fiber-reinforcement on the Strength of Cemented Soils[J].Geotextiles and Geomembranes,2010,28(4):344-351.
[16]LI J,TANG C S,WANG D Y,et al.Effect of Discrete Fiber Reinforcement on Soil Tensile Strength[J].Journal of Rock Mechanics and Geotechnical Engineering,2014,6(2):133-137.
[17]FESTUGOTO L,MENGER E,BENEZRA F,et al.Fibre-reinforced Cemented Soils Compressive and Tensile Strength Assessment as a Function of Filament Length[J].Geotextiles and Geomembranes,2017,45(1):77-82.
[18]陈 峰.玄武岩纤维水泥土抗拉性能试验研究[J].深圳大学学报:理工版,2016,33(2):188-193.
CHEN Feng.Experiment Research on Tensile Strength of Basalt Fiber Cement-soil[J].Journal of Shenzhen University:Science and Engineering,2016,33(2):188-193.
[19]苏红军.玻璃纤维水泥土劈裂抗拉强度影响因素试验研究[J].路基工程,2020(1):71-75,80.
SU Hong-jun.Experimental Study on the Influencing Factors of Splitting Tensile Strength of Glass Fiber Cement Soil[J].Subgrade Engineering,2020(1):71-75,80.

相似文献/References:

[1]侯永利,俞正兴,周磊磊,等.玄武岩纤维再生混凝土冻融后的弯曲疲劳特性[J].建筑科学与工程学报,2023,40(01):14.[doi:10.19815/j.jace.2021.09007]
 HOU Yongli,YU Zhengxing,ZHOU Leilei,et al.Bending fatigue characteristics of frozen-thawed basalt fiber recycled concrete[J].Journal of Architecture and Civil Engineering,2023,40(06):14.[doi:10.19815/j.jace.2021.09007]

备注/Memo

备注/Memo:
收稿日期:2021-09-03
基金项目:国家自然科学基金项目(52078129)
作者简介:沈 晨(1992-),男,安徽蚌埠人,工程博士,E-mail:ivans_shen@126.com。
通信作者:章定文(1978-),男,江苏南京人,教授,博士研究生导师,工学博士,E-mail:zhang@seu.edu.cn。
更新日期/Last Update: 2021-11-01