|本期目录/Table of Contents|

[1]朱 旻,苏 栋,杨伟鸿,等.影响黏土3D打印性能的主要参数研究[J].建筑科学与工程学报,2021,38(06):40-47.[doi:10.19815/j.jace.2021.08061]
 ZHU Min,SU Dong,YANG Wei-hong,et al.Study on Main Parameters Affecting 3D Printing Performance of Clay[J].Journal of Architecture and Civil Engineering,2021,38(06):40-47.[doi:10.19815/j.jace.2021.08061]
点击复制

影响黏土3D打印性能的主要参数研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年06期
页码:
40-47
栏目:
软土地基加固与基础工程
出版日期:
2021-11-05

文章信息/Info

Title:
Study on Main Parameters Affecting 3D Printing Performance of Clay
文章编号:
1673-2049(2021)06-0040-08
作者:
朱 旻1,2,3,苏 栋1,2,3,杨伟鸿1,黄俊杰1,李 强1
(1. 深圳大学 土木与交通工程学院,广东 深圳 518060; 2. 深圳大学 滨海城市韧性基础设施教育部重点实验室,广东 深圳 518060; 3. 深圳大学 深圳市地铁地下车站绿色高效智能建造重点实验室,广东 深圳 518060)
Author(s):
ZHU Min1,2,3, SU Dong1,2,3, YANG Wei-hong1, HUANG Jun-jie1, LI Qiang1
(1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China; 2. Key Laboratory of Coastal Urban Resilient Infrastructures of Ministry of Education, Shenzhen University, Shenzhen 518060, Guangdong, China; 3. Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen University, Shenzhen 518060, Guangdong, China)
关键词:
3D打印 黏土 流动性 可挤出性 可堆积性 变形
Keywords:
3D printing clay flowability extrudability buildability deformation
分类号:
TU411
DOI:
10.19815/j.jace.2021.08061
文献标志码:
A
摘要:
针对影响以黏土作为原材料的小尺寸3D打印性能的主要参数(包括含水率、打印线速度和打印层高)进行了全面研究,并通过试验确定在不同条件下黏土浆体的打印性能,包括浆体流动性、可挤出性、可堆积性等。试验首先研究3D打印系统中挤出压力与浆体挤出速率的关系,根据二者关系调节气泵压力来控制挤出速率。分别改变黏土含水率、打印线速度、打印层高等影响参数,进行黏土的3D打印,并对打印试件进行流变试验,观察试件的成型情况,测量打印试件的相对偏差,分别用于评估黏土浆体的流动性、可挤出性和可堆积性。结果表明:最适合3D打印的黏土含水率为34%~35%,相比于黏土的液限高出3%~4%; 最佳打印线速度为4~5.5 mm·s-1; 最佳打印层高为1.4~1.8 mm,约为喷嘴直径的1倍~1.3倍; 打印参数的设置既要考虑打印材料的特性,又要考虑打印系统的特点,各参数取值还应当受质量守恒定律的约束; 进行黏土3D打印试验时,在确定打印机喷嘴尺寸后,应当率先确定黏土的含水率,随之确定打印系统的线速度、层高、挤出速率和挤出压力等参数。
Abstract:
The main parameters affecting small-scale 3D printing with clay as raw material(including moisture content, printing linear speed and printing layer height)were comprehensively studied. The printing properties of clay paste under different conditions were determined through experiments, including flowability, extrudability, and buildability of clay slurry. Firstly, the relationship between extrusion pressure and slurry extrusion rate in 3D printing system was studied, and the extrusion rate was controlled by adjusting the air pump pressure according to the relationship. The influencing parameters of clay moisture content, printing linear speed and printing layer were changed respectively to carry out 3D printing with clay. The rheological test on the printing specimen was carried out, the forming condition of the specimen was observed, and the relative deviation of the printing specimen was measured, the results were used to evaluate the flowability, extrudability and buildability of clay slurry respectively. The results show that the moisture content of clay most suitable for 3D printing is 34%-35%, which is 3%-4% higher than the liquid limit of clay. The best printing line speed is 4-5.5 mm·s-1. The best printing layer height is 1.4-1.8 mm, which is about 1-1.3 times of the nozzle diameter. The setting of printing parameters should consider not only the characteristics of printing materials, but also the characteristics of printing system. The value of each parameter should also be constrained by the law of mass conservation. During the 3D printing test of clay, after determining the nozzle size of the printer, the moisture content of clay shall be determined firstly, and then the parameters such as linear speed, layer height, extrusion rate and extrusion pressure of the printing system shall be determined.

参考文献/References:

[1] KHOSHNEVIS B.Automated Construction by Contour Crafting-related Robotics and Information Technologies[J].Automation in Construction,2004,13(1):5-19.
[2]小 地.10幢3D打印房屋亮相上海[J].印刷杂志,2014(9):76.
XIAO Di.Ten 3D-Printed Buildings Appeared in Shanghai[J].Printing Field,2014(9):76.
[3]郁放炼.3D打印住宅亮相苏州工业园[J].住宅科技,2015,35(2):60-61.
YU Fang-lian.3D Print Houses Appeared in Suzhou Industrial Park[J].Housing Science,2015,35(2):60-61.
[4]李 瑜.迪拜建成世界最大3D打印建筑[J].砖瓦,2020(2):17.
LI Yu.World's Largest 3D-printed Building Completed in Pubai[J].Brick-tile,2020(2):17.
[5]GAO W,ZHANG Y,RAMANUJAN D,et al.The Status,Challenges,and Future of Additive Manufacturing in Engineering[J].Computer-aided Design,2015,69:65-89.
[6]BUSWELL R A,SOAR R C,GIBB A G F,et al.Freeform Construction:Mega-scale Rapid Manufacturing for Construction[J].Automation in Construction,2007,16(2):224-231.
[7]PERKINS I,SKITMORE M.Three-dimensional Printing in the Construction Industry:A Review[J].The International Journal of Construction Management,2015,15(1):1-9.
[8]LE T T,AUSTIN S A,LIM S,et al.Mix Design and Fresh Properties for High-performance Printing Concrete[J].Materials and Structures,2012,45(8):1221-1232.
[9]PANDA B,SINGH G B,UNLUER C,et al.Synthesis and Characterization of One-part Geopolymers for Extrusion Based 3D Concrete Printing[J].Journal of Cleaner Production,2019,220:610-619.
[10]孙振平,孙远松,庞 敏,等.适合3D打印施工的超高性能混凝土研究[J].新型建筑材料,2021,48(1):1-5.
SUN Zhen-ping,SUN Yuan-song,PANG Min,et al.Preparation of Ultra High Performance Concrete for 3D Printing Construction[J].New Building Materials,2021,48(1):1-5.
[11]LIM S,BUSWELL R A,LE T T,et al.Developments in Construction-scale Additive Manufacturing Processes[J].Automation in Construction,2012,21:262-268.
[12]LIM S,BUSWELL R A,VALENTINE P J,et al.Modelling Curved-layered Printing Paths for Fabricating Large-scale Construction Components[J].Additive Manufacturing,2016,12:216-230.
[13]ASTM C1611/C1611M-14,Standard Test Method for Slump Flow of Self-consolidating Concrete[S].
[14]MA G W,WANG L,JU Y.State-of-the-art of 3D Printing Technology of Cementitious Material — An Emerging Technique for Construction[J].Science China Technological Sciences,2018,61(4),475-495.
[15]CHEN M X,LI L B,ZHENG Y,et al.Rheological and Mechanical Properties of Admixtures Modified 3D Printing Sulphoaluminate Cementitious Materials[J].Construction and Building Materials,2018,189:601-611.
[16]王 超.3D打印技术在传统陶瓷领域的应用进展[J].中国陶瓷,2015,51(12):6-11.
WANG Chao.Application Process of 3D Printing Technology in the Field of Traditional Ceramics[J].China Ceramics,2015,51(12):6-11.
[17]BIRD R B,DAI G C,YARUSSO B J.The Rheology and Flow of Viscoplastic Materials[J].Reviews in Chemical Engineering,1983,1(1):1-70.
[18]CHHABRA R P,RICHARDSON J F.Non-Newtonian Flow and Applied Rheology:Engineering Applications[M].Oxford:Butterworth-Heinemann,2011.
[19]MALAEB Z,HACHEM H,TOURBAH A,et al.3D Concrete Printing:Machine and Mix Design[J].International Journal of Civil Engineering & Technology,2015,6(6):14-22.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-08-19
基金项目:国家自然科学基金项目(51938008)
作者简介:朱 旻(1990-),男,江苏淮安人,工学博士,博士后,E-mail:zhuminfnf@163.com。
更新日期/Last Update: 2021-11-01