|本期目录/Table of Contents|

[1]邓 碧,张俊伟,诸葛绪松,等.软土地层并行曲线隧道施工顺序对既有隧道的影响[J].建筑科学与工程学报,2021,38(06):170-176.[doi:10.19815/j.jace.2021.08048]
 DENG Bi,ZHANG Jun-wei,ZHUGE Xu-song,et al.Influence of Construction Sequence of Parallel Curved Tunnels on Existing Tunnels in Soft Soil Stratum[J].Journal of Architecture and Civil Engineering,2021,38(06):170-176.[doi:10.19815/j.jace.2021.08048]
点击复制

软土地层并行曲线隧道施工顺序对既有隧道的影响(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
38卷
期数:
2021年06期
页码:
170-176
栏目:
软土隧道施工与变形控制
出版日期:
2021-11-05

文章信息/Info

Title:
Influence of Construction Sequence of Parallel Curved Tunnels on Existing Tunnels in Soft Soil Stratum
文章编号:
1673-2049(2021)06-0170-07
作者:
邓 碧1,张俊伟2,诸葛绪松3,刘文献4,林星涛1,5,6,苏 栋1,5,6,陈湘生1,5,6
(1. 深圳大学 土木与交通工程学院,广东 深圳 518060; 2. 中铁十五局集团有限公司,上海 200070; 3. 珠海大横琴城市新中心发展有限公司,广东 珠海 519030; 4. 珠海市规划设计研究院,广东 珠海 519000; 5. 深圳大学 滨海城市韧性基础设施教育部重点实验室,广东 深圳 518060; 6. 深圳大学 深圳市地铁地下车站绿色高效智能建造重点实验室,广东 深圳 518060)
Author(s):
DENG Bi1, ZHANG Jun-wei2, ZHUGE Xu-song3, LIU Wen-xian4, LIN Xing-tao1,5,6, SU Dong1,5,6, CHEN Xiang-sheng1,5,6
(1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China; 2. China Railway 15 Bureau Group Co., Ltd., Shanghai 200070, China; 3. Zhuhai Dahengqin City New Center Development Co., Ltd., Zhuhai 519030, Guangdong, China; 4. Zhuhai Institute of Urban Planning and Design,Zhuhai 519000, Guangdong, China;
关键词:
软土地层 曲线隧道 施工顺序 曲率半径 结构内力
Keywords:
soft soil stratum curved tunnel construction sequence radius of curvature structural internal force
分类号:
TU43
DOI:
10.19815/j.jace.2021.08048
文献标志码:
A
摘要:
为了研究并行曲线隧道施工顺序对既有隧道的影响,以横琴杧洲隧道工程为依托,建立了并行曲线隧道三维有限元数值模型。在此基础上,研究了不同施工顺序和曲率半径r(r=500,800 m)下新建曲线盾构隧道开挖对既有隧道变形的影响。结果表明:施工顺序对既有隧道位移影响较小,曲率半径对既有隧道位移影响相对较大; 随着曲率半径(r=500~800 m)的增加,既有隧道位移增加约15%; 既有隧道的位移主要在盾构开挖面前方2D(D为隧道外径)、后方1D范围内产生; 施工顺序对既有隧道内力的影响与曲率半径有关; 隧道曲率半径为500 m时,施工顺序对既有隧道内力变化影响规律相似,即离盾构开挖面最近的既有隧道剖面产生的弯矩最大,且最大弯矩和最小弯矩均出现在靠近新隧道一侧; 内侧隧道先开挖时,既有隧道的弯矩(绝对值)更小,此时对于并行曲线隧道施工,内侧隧道先开挖更安全; 在盾构开挖面前方一定距离内既有隧道产生的轴力最大; 隧道曲率半径为800 m时,双线隧道近似于平行隧道,施工顺序对既有隧道内力变化和大小影响较小。
Abstract:
To study the influence of the construction sequence of parallel curved tunnels, a three-dimensional finite element numerical model was established according to the Mangzhou tunnel project in Hengqin. On the basis, the deformation of existing tunnel induced by the new curved shield tunnelling was investigated under different construction sequences and radii of curvature r(r=500, 800 m). The results show that the construction sequence has a small effect on the existing tunnel displacement, while the radius of curvature has a relatively large effect on the existing tunnel displacement, which increases by about 15% with the increasing of the radius of curvature(r=500-800 m). The existing tunnel displacements mainly occur within 2D(D is the tunnel outer diameter)in front of the shield excavation face and 1D behind it. The effect of the construction sequence on the internal forces of the existing tunnel is related to the radius of curvature. For a radius of curvature of 500 m, the construction sequence has a similar effect on the internal forces of the existing tunnel as the existing tunnel profile closest to the shield excavation produces the largest bending moment, and both the maximum and minimum bending moments occur close to the new tunnel side. The bending moment(absolute value)in the existing tunnel is smaller when the inner tunnel is excavated firstly, making it safer to excavate the inner tunnel firstly for parallel curved tunnel construction. The greatest axial forces are generated in the existing tunnel at a certain distance in front of the shield excavation face. The double-line tunnel with radius of curvature of 800 m is approximately similar to parallel tunnel and the construction sequence has a small effect on the variation and magnitude of the internal forces of the existing tunnel.

参考文献/References:

[1] 方 勇,何 川.平行盾构隧道施工对既有隧道影响的数值分析[J].岩土力学,2007,28(7):1402-1406.
FANG Yong,HE Chuan.Numerical Analysis of Effects of Parallel Shield Tunneling on Existent Tunnel[J].Rock and Soil Mechanics,2007,28(7):1402-1406.
[2]何 川,苏宗贤,曾东洋.盾构隧道施工对已建平行隧道变形和附加内力的影响研究[J].岩石力学与工程学报,2007,26(10):2063-2069.
HE Chuan,SU Zong-xian,ZENG Dong-yang.Research on Influence of Shield Tunnel Construction on Deformation and Secondary Inner Force of Constructed Parallel Tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2063-2069.
[3]刘汉龙,钟海怡,顾 鑫,等.平行隧道开挖引起场地沉降的透明土模型试验研究[J].土木与环境工程学报:中英文,2021,43(1):1-10.
LIU Han-long,ZHONG Hai-yi,GU Xin,et al.Transparent Soil Model Testing on Ground Settlement Induced by Parallel Tunnels Excavation[J].Journal of Civil and Environmental Engineering,2021,43(1):1-10.
[4]魏 纲,庞思远.双线平行盾构隧道施工引起的三维土体变形研究[J].岩土力学,2014,35(9):2562-2568.
WEI Gang,PANG Si-yuan.Study of Three-dimensional Soil Deformation Caused by Double-line Parallel Shield Tunnel Construction[J].Rock and Soil Mechanics,2014,35(9):2562-2568.
[5]ZHENG G,TONG J B,ZHANG T Q,et al,Experimental Study on Surface Settlements Induced by Sequential Excavation of Two Parallel Tunnels in Drained Granular Soil[J].Tunnelling and Underground Space Technology,2020,98:103347.
[6]邱明明,杨果林,吴镇清,等.双孔平行地铁隧道盾构施工地表沉降分布规律研究[J].现代隧道技术,2017,54(2):96-105.
QIU Ming-ming,YANG Guo-lin,WU Zhen-qing,et al.Distribution Laws of Surface Settlement Induced by Shield Construction of Twin-tube Metro Tunnels[J].Modern Tunnelling Technology,2017,54(2):96-105.
[7]张天奇.盾构法平行隧道施工引起的地面沉降及隧道相互影响机理与控制研究[D].天津:天津大学,2016.
ZHANG Tian-qi.Investigation on the Induced Surface Settlements,Tunnel Interaction Mechanisms and Control Countermeasures During the Construction of Two Parallel Shield Tunnels[D].Tianjin:Tianjin University,2016.
[8]郝润霞.软土地区曲线段盾构隧道超挖量与注浆量分析[J].地下空间与工程学报,2013,9(5):1132-1136.
HAO Run-xia.Analysis of Over-excavated Volume and Synchronous Grouting Volume for the Shield Tunnel at Curved Section in Soft Soil Area[J].Chinese Journal of Underground Space and Engineering,2013,9(5):1132-1136.
[9]陈 剑,李智明.急曲线隧道盾构超挖量及铰接角的理论算法[J].中国公路学报,2017,30(8):66-73.
CHEN Jian,LI Zhi-ming.Theoretical Algorithm for Over-excavated Volume and Articulation Angle During Shield Tunneling Along Sharp Curves[J].China Journal of Highway and Transport,2017,30(8):66-73.
[10]孙捷城,路林海,王国富,等.小半径曲线盾构隧道掘进施工地表变形计算[J].中国铁道科学,2019,40(5):63-72.
SUN Jie-cheng,LU Lin-hai,WANG Guo-fu,et al.Calculation Method of Surface Deformation Induced by Small Radius Curve Shield Tunneling Construction[J].China Railway Science,2019,40(5):63-72.
[11]邓皇适,傅鹤林,史 越.小转弯半径曲线盾构隧道开挖引发地表沉降计算[J].岩土工程学报,2021,43(1):165-173.
DENG Huang-shi,FU He-lin,SHI Yue.Calculation of Surface Settlement Caused by Excavation of Shield Tunnels with Small Turning Radius[J].Chinese Journal of Geotechnical Engineering,2021,43(1):165-173.
[12]LI S H,ZHANG M J,LI P F.Analytical Solutions to Ground Settlement Induced by Ground Loss and Construction Loadings During Curved Shield Tunneling[J].Journal of Zhejiang University-Science A:Applied Physics and Engineering,2021,22(4):296-313.
[13]陈 强.小半径曲线地铁隧道盾构施工技术[J].隧道建设,2009,29(4):446-450,474.
CHEN Qiang.Shield Boring Technology for Metro Tunnels on Curves with Small Radius[J].Tunnel Construction,2009,29(4):446-450,474.
[14]张明聚,张振波,陈 锋.高压富水碎裂状岩层小半径曲线盾构隧道施工技术[J].现代隧道技术,2018,55(6):197-203,209.
ZHANG Ming-ju,ZHANG Zhen-bo,CHEN Feng.Construction Techniques for the Small-radius Curved Shield Tunnels in Water-rich Fractured Stratum with High Pressure[J].Modern Tunnelling Technology,2018,55(6):197-203,209.
[15]梁 晗.复合地层小半径曲线隧道盾构掘进关键技术研究[D].北京:北京交通大学,2020.
LIANG Han.Study on the Key Technology of Shield Tunneling in Small Radius Curve Tunnel in Composite Stratum[D].Beijing:Beijing Jiaotong University,2020.
[16]ZHANG M J,LI S H,LI P F.Numerical Analysis of Ground Displacement and Segmental Stress and Influence of Yaw Excavation Loadings for a Curved Shield Tunnel[J].Computers and Geotechnics,2020,118(6):103325.
[17]刘志祥,张海清.PLAXIS高级应用教程[M].北京:机械工业出版社,2015.
LIU Zhi-xiang,ZHANG Hai-qing.PLSXIS Advanced Application Tutorial[M].Beijing:China Machine Press,2015.
[18]顾晓强,吴瑞拓,梁发云,等.上海土体小应变硬化模型整套参数取值方法及工程验证[J].岩土力学,2021,42(3):833-845.
GU Xiao-qiang,WU Rui-tuo,LIANG Fa-yun,et al.On HSS Model Parameters for Shanghai Soils with Engineering Verification[J].Rock and Soil Mechanics,2021,42(3):833-845.
[19]黄宏伟,徐 凌,严佳梁,等.盾构隧道横向刚度有效率研究[J].岩土工程学报,2006,28(1):11-18.
HUANG Hong-wei,XU Ling,YAN Jia-liang,et al.Study on Transverse Effective Rigidity Ratio of Shield Tunnels[J].Chinese Journal of Geotechnical Engineering,2006,28(1):11-18.
[20]钟小春,张金荣,秦建设,等.盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J].岩土力学,2011,32(1):132-136.
ZHONG Xiao-chun,ZHANG Jin-rong,QIN Jian-she,et al.Simplified Calculation Model for Longitudinal Equivalent Bending Stiffness of Shield Tunnel and Its Influence Factors' Analysis[J].Rock and Soil Mechanics,2011,32(1):132-136.

相似文献/References:

[1]宋棋龙,祁文睿,李文静,等.滨海软土地层浅埋超大直径盾构隧道开挖面破坏机理及加固范围研究[J].建筑科学与工程学报,2021,38(06):155.[doi:10.19815/j.jace.2021.08054]
 SONG Qi-long,QI Wen-rui,LI Wen-jing,et al.Study on Failure Mechanism of Excavation Face and Reinforcement Range of Shallow-buried Super Large Diameter Shield Tunnel in Coastal Soft Soil Stratum[J].Journal of Architecture and Civil Engineering,2021,38(06):155.[doi:10.19815/j.jace.2021.08054]

备注/Memo

备注/Memo:
收稿日期:2021-08-08
基金项目:国家自然科学基金项目(51938008,52090081); 中铁十五局科研项目[CR15CG-ZH-HQMZSD-2021-00001(KJ)]
作者简介:邓 碧(1997-),女,湖南衡阳人,工学硕士研究生,E-mail:dengbi2019@email.szu.edu.cn。
通信作者:林星涛(1990-),男,河北邢台人,工学博士研究生,E-mail:xtlin@szu.edu.cn。
更新日期/Last Update: 2021-11-01