|本期目录/Table of Contents|

[1]张素梅,陈广锐,李爱东,等.Q420qD钢材应力腐蚀特征试验研究[J].建筑科学与工程学报,2022,39(01):55-64.[doi:10.19815/j.jace.2020.11052]
 ZHANG Su-mei,CHEN Guang-rui,LI Ai-dong,et al.Experimental Study on Stress Corrosion Characteristics of Steel Q420qD[J].Journal of Architecture and Civil Engineering,2022,39(01):55-64.[doi:10.19815/j.jace.2020.11052]
点击复制

Q420qD钢材应力腐蚀特征试验研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年01期
页码:
55-64
栏目:
钢结构
出版日期:
2022-02-15

文章信息/Info

Title:
Experimental Study on Stress Corrosion Characteristics of Steel Q420qD
文章编号:
1673-2049(2022)01-0055-10
作者:
张素梅1,陈广锐1,李爱东2,郭现钊2,张 磊2,郭兰慧3
(1. 哈尔滨工业大学(深圳)土木与环境工程学院,广东 深圳 518055; 2. 中国铁路设计集团有限公司,天津 300308; 3. 哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150010)
Author(s):
ZHANG Su-mei1, CHEN Guang-rui1, LI Ai-dong2, GUO Xian-zhao2, ZHANG Lei2, GUO Lan-hui3
(1. School of Civil and Environmental Engineering, Harbin Institute of Technology(Shenzhen), Shenzhen 518055, Guangdong, China; 2. China Railway Design Group Co. Ltd., Tianjin 300308, China; 3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150010, Heilongjiang, China)
关键词:
Q420qD钢材 应力腐蚀 腐蚀速率 表面形貌 分形维数 蚀坑深度 径深比
Keywords:
steel Q420qD stress corrosion corrosion rate surface morphology fractal dimension pit depth diameter to depth ratio
分类号:
TU511.3
DOI:
10.19815/j.jace.2020.11052
文献标志码:
A
摘要:
为研究Q420qD钢材应力腐蚀特征,对应力水平为0.3倍屈服应力和无应力工况下共60个试件在相同腐蚀环境中进行通电加速腐蚀试验,建立了有应力和无应力腐蚀试件的腐蚀速率模型并进行对比。对部分腐蚀试件表面进行三维形貌扫描,研究了有应力和无应力试件的形貌发展规律、蚀坑深度分布规律以及蚀坑形态与径深比规律。利用差分盒维数计算腐蚀表面分形维数,对比了有应力和无应力试件分形维数随质量损失率和腐蚀时间的变化规律。结果表明:当试件应力为0.3倍屈服应力时,有应力和无应力试件腐蚀速率均表现为先快后慢,在目标腐蚀率小于18%时,有应力和无应力试件腐蚀速率近似为常数,且有应力试件的腐蚀速率近似为无应力试件的1.15倍; 有应力试件腐蚀形貌发展快于无应力试件,且最终腐蚀形态都以均匀腐蚀为主; 有应力和无应力试件表面分形维数变化规律相似,均在腐蚀初期迅速增大,之后出现减小—增大—减小的周期性上下波动现象; 有应力试件分形维数在腐蚀初期发展速率高于无应力试件,且有应力试件的分形维数普遍大于无应力试件; 蚀坑形态以球冠状为主,有应力和无应力试件单个蚀坑深度分布均能较好地服从正态分布规律; 蚀坑径深比变化范围稳定于2~6,平均值在4附近波动。
Abstract:
To investigate the stress corrosion characteristics of steel Q420qD, totally 60 specimens under 0.3 times of the yield stress and no stress conditions were tested by accelerated corrosion of electricity respectively in the same corrosive environment. Afterward, the corrosion rate model of the specimens was established and compared. The 3D surface topography on some selected corroded specimens were scanned, and the morphology development law of the stressed and unstressed specimens, the distribution law of pit depth, the shape of pits and the law of diameter to depth ratio were analyzed. The fractal dimension of the corrosion surface was calculated by differential box counting method, and its variation law was analyzed and compared with mass loss rate and corrosion age of stressed and unstressed specimens. The results show that when the stress of the specimen is 0.3 times of the yield stress, the corrosion rates of the stressed and unstressed specimens develop faster in the initial stage and then slow down. Before the target corrosion rate reaches 18%, the corrosion rate is approximately keeping constant, while the corrosion rate of the stressed specimen is approximately 1.15 times faster than that of the unstressed specimen. The corrosion morphology of stressed specimens develops faster than that of unstressed specimens, and the final corrosion pattern is dominated by uniform corrosion. The fractal dimension on the surface of stressed or unstressed specimens has similar change rules, and they all show a rapid increase at the beginning stage, then in a general slow-down trend with periodic upward and downward fluctuations. The development of fractal dimension of stressed specimen is higher than that of unstressed specimen at the initial stage of corrosion, and the fractal dimension of the stressed specimen is generally higher than that of unstressed specimen. The shapes of the corrosion pits are mainly spherical crowns, and the pit depth distributions of stressed and unstressed specimens obey the normal distribution law. The variation range of diameter to depth ratio of pits is stably distributed between 2 and 6 with an average value around 4.

参考文献/References:

[1] YANG H Q,ZHANG Q,TU S S,et al.A Study on Time-variant Corrosion Model for Immersed Steel Plate Elements Considering the Effect of Mechanical Stress[J].Ocean Engineering,2016,125:134-146.
[2]徐善华,任松波,崔焕平,等.锈蚀槽钢受弯承载力试验研究[J].实验力学,2014,29(4):506-512.
XU Shan-hua,REN Song-bo,CUI Huan-ping,et al.Experimental Study of Bending Capacity of Corroded Channel Steel Member[J].Journal of Experimental Mechanics,2014,29(4):506-512.
[3]徐善华,王 皓,薛 南.锈蚀钢材偏心受压钢柱承载性能退化规律[J].哈尔滨工业大学学报,2016,48(6):157-163,169.
XU Shan-hua,WANG Hao,XUE Nan.Deterioration Law of Bearing Properties for Corroded Eccentric Steel Columns[J].Journal of Harbin Institute of Technology,2016,48(6):157-163,169.
[4]白 烨.锈蚀槽钢受弯性能试验研究与理论分析[D].西安:西安建筑科技大学,2009.
BAI Ye.Experimental Study and Theoretical Analysis on the Bending Behavior of the Corroded Channel Steel[D].Xi'an:Xi'an University of Architecture and Technology,2009.
[5]张岳林,彭 飞,牟金磊.双点腐蚀对船体板应力集中影响研究[J].舰船科学技术,2015,37(12):23-26.
ZHANG Yue-lin,PENG Fei,MU Jin-lei.Effect of Double Corrosion Pits on Hull Plates' Stress Concentration[J].Ship Science and Technology,2015,37(12):23-26.
[6]秦广冲.腐蚀坑对钢材应力集中系数及疲劳损伤影响研究[D].西安:西安建筑科技大学,2014.
QIN Guang-chong.The Study of Corrosion Pits Impact on Steel Stress Concentration Factor and Fatigue Damage[D].Xi'an:Xi'an University of Architecture and Technology,2014.
[7]徐善华,王 皓,苏 磊,等.考虑点蚀损伤的锈蚀钢板延性退化[J].东南大学学报(自然科学版),2016,46(6):1257-1263.
XU Shan-hua,WANG Hao,SU Lei,et al.Ductility Degradation of Corroded Steel Plates with Pitting Damage[J].Journal of Southeast University(Natural Science Edition),2016,46(6):1257-1263.
[8]邱 斌.中性盐雾环境下锈蚀H型钢表面特征及偏压承载性能研究[D].西安:西安建筑科技大学,2014.
QIU Bin.The Study on Surface Characteristics and Eccentric Compressive Load-capacity of Corroded H-shape Steel Members at Neutral Salt Fog Environment[D].Xi'an:Xi'an University of Architecture and Technology,2014.
[9]宋方远,谢 旭.锈蚀对钢材低周疲劳性能的影响分析[J].浙江大学学报(工学版),2018,52(12):2285-2294.
SONG Fang-yuan,XIE Xu.Effect Analysis of Corrosion on Low Cycle Fatigue Behavior of Structural Steel[J].Journal of Zhejiang University(Engineering Science),2018,52(12):2285-2294.
[10]徐小连,陈义庆,钟 彬,等.中性介质中Q420qD高强桥梁钢的腐蚀行为[J].腐蚀科学与防护技术,2010,22(2):136-138.
XU Xiao-lian,CHEN Yi-qing,ZHONG Bin,et al.Corrosion of Q420qD High Strength Steel for Bridge in Neutral Media[J].Journal of Corrosion Science and Protection Technology,2010,22(2):136-138.
[11]盛 杰.荷载与地下环境耦合作用下H型钢梁锈蚀特征及力学性能研究[D].徐州:中国矿业大学,2017.
SHENG Jie.Study on Surface Characteristics and Mechanical Properties of Corroded H Steel Beam Under Coupling Action of Load and Underground Environment[D].Xuzhou:China University of Mining and Technology,2017.
[12]李安邦,徐善华.中性盐雾加速腐蚀钢结构表面形貌分形维数表征[J].材料导报,2019,33(20):3502-3507.
LI An-bang,XU Shan-hua.Characterization of Surface Morphology of Neutral Salt-Spray Accelerated Corrosion Steel Structure by Fractal Dimension[J].Materials Reports,2019,33(20):3502-3507.
[13]冯大帅.中性盐雾腐蚀后Q345B钢材疲劳性能研究[D].徐州:中国矿业大学,2019.
FENG Da-shuai.Study on Fatigue Properties of Q345B Steel After Neutral Salt Spray Corrosion[D].Xuzhou:China University of Mining and Technology,2019.
[14]高 山,彭 震,郭兰慧.盐雾腐蚀下钢管混凝土短柱轴压性能试验研究[J].建筑结构学报,2019,40(增1):214-219.
GAO Shan,PENG Zhen,GUO Lan-hui.Experimental Study on Axial Performance of Concrete-filled Steel Tubular Stub Column Under Salt Spray Corrosion[J].Journal of Building Structures,2019,40(S1):214-219.
[15]马厚标.考虑点蚀损伤海洋平台钢材的力学性能研究[D].大连:大连理工大学,2018.
MA Hou-biao.Study on Mechanical Properties of Offshore Platform Steel Considering Pitting Damage[D].Dalain:Dalian University of Technology,2018.
[16]陈梦成,方 苇,黄 宏,等.锈蚀圆钢管再生混凝土轴压短柱受力性能研究[J].建筑结构学报,2019,40(12):138-146.
CHEN Meng-cheng,FANG Wei,HUANG Hong,et al.Axial Compressive Behavior of Recycled Concrete Filled Corroded Circular Steel Tubular Columns[J].Journal of Building Structures,2019,40(12):138-146.
[17]SARKAR N,CHAUDHURI B B.An Efficient Approach to Estimate Fractal Dimension of Textural Images[J].Pattern Recognition,1992,25(9):1035-1041.
[18]颜 力,廖柯嘉,蒙东英,等.管道最大腐蚀坑深的极值统计方法研究[J].石油工程建设,2007,33(3):1-5.
YAN Li,LIAO Ke-jia,MENG Dong-ying,et al.Study on Extremum Statistical Method of Maximum Corroded Pit Depth of Pipeline[J].Petroleum Engineering Construction,2007,33(3):1-5.
[19]刘庭耀.正态概率分布的回归检验[J].机械强度,1999,21(4):261-263.
LIU Ting-yao.Regression Check of Normal Probability Distribution[J].Journal of Mechanical Strength,1999,21(4):261-263.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-07-03
基金项目:国家自然科学基金项目(51778185)
作者简介:张素梅(1963-),女,辽宁兴城人,教授,博士研究生导师,工学博士,E-mail:smzhang@hit.edu.cn。
更新日期/Last Update: 2021-02-10