|本期目录/Table of Contents|

[1]彭益华,毛立敏.半漂浮式主梁钢管混凝土拱桥黏滞阻尼器减震设计[J].建筑科学与工程学报,2022,39(02):36-43.[doi:10.19815/j.jace.2021.04060]
 PENG Yi-hua,MAO Li-min.Damping Design of Semi-floating Main Girder Concrete-filled Steel Tubular Arch Bridge with Viscous Damper[J].Journal of Architecture and Civil Engineering,2022,39(02):36-43.[doi:10.19815/j.jace.2021.04060]
点击复制

半漂浮式主梁钢管混凝土拱桥黏滞阻尼器减震设计(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年02期
页码:
36-43
栏目:
防灾减灾工程
出版日期:
2022-03-30

文章信息/Info

Title:
Damping Design of Semi-floating Main Girder Concrete-filled Steel Tubular Arch Bridge with Viscous Damper
文章编号:
1673-2049(2022)02-0036-08
作者:
彭益华1,2,3,毛立敏2
(1. 广西财经学院 管理科学与工程学院,广西 南宁 530007; 2. 广西交通设计集团有限公司,广西 南宁 530029; 3. 中南大学 土木工程学院,湖南 长沙 410075)
Author(s):
PENG Yi-hua1,2,3, MAO Li-min2
(1. School of Management Science and Engineering,Guangxi University of Finance and Economics, Nanning 530007, Guangxi, China; 2. Guangxi Communications Design Group Co., Ltd., Nanning 530029, Guangxi, China; 3. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China)
关键词:
钢管混凝土拱桥 减震设计 非线性动力时程分析 黏滞阻尼器 半漂浮式主梁
Keywords:
concrete-filled steel tubular arch bridge damping design nonlinear dynamic time history analysis viscous damper semi-floating main girder
分类号:
TU318
DOI:
10.19815/j.jace.2021.04060
文献标志码:
A
摘要:
为研究大跨半漂浮体系中承式钢管混凝土拱桥黏滞阻尼器参数选取与减震效果,以某计算跨径320 m中承式钢管混凝土拱桥为工程背景,采用MIDAS/Civil软件建立有限元模型,在动力特性分析的基础上提出黏滞阻尼器减震方案,并基于非线性动力时程分析方法研究了黏滞阻尼器的参数选取与减震效果。结果表明:半漂浮体系中承式钢管混凝土拱桥的纵飘振型出现较早,振型参与质量所占比重大,黏滞阻尼器参数选取主要应考虑梁端纵桥向容许位移和阻尼器连接构件所能承受的阻尼力; 对相同的阻尼指数,主梁梁端最大纵桥向位移响应随着阻尼系数的增大呈非线性减小,阻尼器轴力随着阻尼系数的增大几乎呈线性增大; 阻尼指数在0.2~0.4之间变化时,阻尼指数越大,同时满足梁端位移与阻尼力要求的阻尼系数可选范围越大; 设置黏滞阻尼器后,梁端纵桥向位移响应显著减小,拱顶纵桥向位移有所增加,除拱顶处拱肋轴力略有减小外,其余各处轴力、剪力与弯矩均有所增加,但内力响应绝对值不大; 研究成果可为同类桥梁减震设计提供参考。
Abstract:
In order to study the parameter selection and damping effect of viscous damper for long-span semi-floating main girder half through concrete-filled steel tubular arch bridge, taking a half through concrete-filled steel tubular arch bridge with a calculated span of 320 m as the engineering background, the finite element model was established by MIDAS/Civil software. Based on the analysis of dynamic characteristics, the damping scheme of viscous damper was proposed. Based on the nonlinear dynamic time history analysis method, the parameter selection and damping effect of viscous damper were studied. The results show that the longitudinal floating vibration mode of semi-floating main girder half through concrete-filled steel tubular arch bridge appears earlier, and the vibration mode takes a significant proportion in the mass. The allowable longitudinal displacement of the beam end and the damping force that the damper connecting members can bear should be considered in the selection of viscous damper parameters. For the same damping index, the maximum longitudinal displacement response of the main beam end decreases nonlinearly with the increase of the damping coefficient, and the axial force of the damper increases almost linearly with the increase of the damping coefficient. When the damping index changes within the range of 0.2-0.4, the larger the damping index is, the larger the optional range of damping coefficient meeting the requirements of beam end displacement and damping force is. After setting viscous damper, the longitudinal bridge displacement response of beam end decreases significantly, and the longitudinal bridge displacement of arch crown increases. Except that the axial force of arch rib at the vault decreases slightly, the axial force, shear force and bending moment at other places increase, but the absolute value of internal force response is small. The research results can provide reference for the seismic design of similar bridges.

参考文献/References:

[1] 陈宝春,刘君平.世界拱桥建设与技术发展综述[J].交通运输工程学报,2020,20(1):27-41.
CHEN Bao-chun,LIU Jun-ping.Review of Construction and Technology Development of Arch Bridges in the World[J].Journal of Traffic and Transportation Engineering,2020,20(1):27-41.
[2]孙大斌,施 威,刘祥君.高速铁路异型拱桥抗震体系及抗震措施分析[J].铁道工程学报,2015,32(12):45-50.
SUN Da-bin,SHI Wei,LIU Xiang-jun.Analysis of Seismic Design System and Earthquake Resisting Methods of a High-speed Railway Heterotypic Arch Bridge[J].Journal of Railway Engineering Society,2015,32(12):45-50.
[3]LIN W H,CHOPRA A K.Earthquake Response of Elastic SDF Systems with Non-linear Fluid Viscous Dampers[J].Earthquake Engineering & Structure Dynamics,2002,31(9):1623-1642.
[4]GOEL R K.Seismic Response of Linear and Non-linear Asymmetric Systems with Non-linear Fluid Viscous Dampers[J].Earthquake Engineering & Structural Dynamics,2005,34(7):825-846.
[5]王志强,胡世德,范立础.东海大桥粘滞阻尼器参数研究[J].中国公路学报,2005,18(3):37-42.
WANG Zhi-qiang,HU Shi-de,FAN Li-chu.Research on Viscous Damper Parameters of Donghai Bridge[J].China Journal of Highway and Transport,2005,18(3):37-42.
[6]燕 斌,杜修力,韩 强,等.减隔震混合装置在独塔斜拉桥抗震设计中的应用[J].桥梁建设,2014,44(6):101-106.
YAN Bin,DU Xiu-li,HAN Qiang,et al.Application of Hybrid Seismic Mitigation and Isolation Device to Seismic Design of Single-pylon Cable-stayed Bridge[J].Bridge Construction,2014,44(6):101-106.
[7]李世渊,秦晶迪.某三跨斜拉桥纵向设置液体黏滞阻尼器阻尼系数优化[J].交通运输研究,2017,3(6):69-74.
LI Shi-yuan,QIN Jing-di.Damping Coefficient Optimization of Longitudinal Fluid Viscous Damper for a Three-tower Cable-stayed Bridge[J].Transport Research,2017,3(6):69-74.
[8]GUAN Z G,YOU H,LI J Z.An Effective Lateral Earthquake-resisting System for Long-span Cable-stayed Bridges Against Near-fault Earthquakes[J].Engineering Structures,2019,196(3):109345.
[9]GUO W,LI J Z,GUAN Z G.Shake Table Test on a Long-span Cable-stayed Bridge with Viscous Dampers Considering Wave Passage Effects[J].Journal of Bridge Engineering,2021,26(2):04020118.
[10]SU C,LI B M,CHEN T C,et al.Stochastic Optimal Design of Nonlinear Viscous Dampers for Large-scale Structures Subjected to Non-stationary Seismic Excitations Based on Dimension-reduced Explicit Method[J].Engineering Structures,2018,175:217-230.
[11]卢桂臣,胡雷挺.西堠门大桥液体粘滞阻尼器参数分析[J].世界桥梁,2005,33(2):43-45.
LU Gui-chen,HU Lei-ting.Analysis of Parametric Sensitivity of Fluid Viscous Dampers for Xihoumen Bridge[J].World Bridges,2005,33(2):43-45.
[12]郭志明,汪鸿鑫,叶爱君.设柔性中央扣的特大跨度悬索桥纵向抗震体系研究[J].桥梁建设,2020,50(1):38-43.
GUO Zhi-ming,WANG Hong-xin,YE Ai-jun.Longitudinal Anti-seismic System for Long-span Suspension Bridge with Flexible Central Buckle[J].Bridge Construction,2020,50(1):38-43.
[13]邬 都,李贞新.虎门二桥坭洲水道桥黏滞阻尼器参数研究[J].公路,2016(8):126-130.
WU Du,LI Zhen-xin.Study on Parameters of Viscous Damper for Nizhou Waterway Bridge of Humen No.2 Bridge[J].Highway,2016(8):126-130.
[14]刘振宇,李 乔,蒋劲松,等.南宁大桥粘滞阻尼器参数分析[J].桥梁建设,2007,37(4):25-28.
LIU Zhen-yu,LI Qiao,JIANG Jin-song,et al.Analysis of Parameters of Nanning Bridge Viscous Dampers[J].Bridge Construction,2007,37(4):25-28.
[15]童申家,李 纲,姜 浩.不同相位差地震作用下钢管混凝土拱桥减震研究[J].桥梁建设,2009,39(3):22-24,80.
TONG Shen-jia,LI Gang,JIANG Hao.Study of Seismic Mitigation of CFST Arch Bridge Under Action of Earthquake of Different Phase Differences[J].Bridge Construction,2009,39(3):22-24,80.
[16]李小珍,刘桢杰,辛莉峰,等.考虑行波效应的刚架系杆拱桥减隔震分析[J].铁道工程学报,2015,32(3):46-51.
LI Xiao-zhen,LIU Zhen-jie,XIN Li-feng,et al.Analysis of Seismic Isolation for Frame Tied Bridge Under the Effect of Traveling Wave[J].Journal of Railway Engineering Society,2015,32(3):46-51.

相似文献/References:

[1]赖秀英,陈宝春.钢管混凝土拱桥收缩次内力计算[J].建筑科学与工程学报,2013,30(03):120.
 LAI Xiu-ying,CHEN Bao-chun.Calculation of Shrinkage Secondary Internal Force of CFST Arch Bridge[J].Journal of Architecture and Civil Engineering,2013,30(02):120.
[2]王元清,张勇,石永久,等.吊索与钢管混凝土拱桥新型节点承载性能分析[J].建筑科学与工程学报,2005,22(03):55.
 WANG Yuan-qing,ZHANG Yong,SHI Yong-jiu,et al.Analysis of load capacity of new-style joints between cable and concrete-filled steel tube arch bridge[J].Journal of Architecture and Civil Engineering,2005,22(02):55.

备注/Memo

备注/Memo:
收稿日期:2021-04-18
基金项目:国家自然科学基金项目(51708559); 广西高校中青年教师科研基础能力提升项目(2021KY0652)
作者简介:彭益华(1982-),男,湖南邵阳人,高级工程师,工学博士研究生,E-mail:pyhsic@163.com。
更新日期/Last Update: 2022-03-20