|本期目录/Table of Contents|

[1]刘界鹏,崔 娜,周绪红,等.基于三维激光扫描的房屋尺寸质量智能化检测方法[J].建筑科学与工程学报,2022,39(04):71-80.[doi:10.19815/j.jace.2021.07148]
 LIU Jie-peng,CUI Na,ZHOU Xu-hong,et al.Intelligent Inspection Method for Dimensional Quality of Houses Based on 3D Laser Scanning[J].Journal of Architecture and Civil Engineering,2022,39(04):71-80.[doi:10.19815/j.jace.2021.07148]
点击复制

基于三维激光扫描的房屋尺寸质量智能化检测方法(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年04期
页码:
71-80
栏目:
出版日期:
2022-07-12

文章信息/Info

Title:
Intelligent Inspection Method for Dimensional Quality of Houses Based on 3D Laser Scanning
文章编号:
1673-2049(2022)04-0071-10
作者:
刘界鹏1,2,崔 娜1,2,周绪红1,2,李东声3,程国忠1,2,曾 焱1,2,曹宇星1,2
(1. 重庆大学 土木工程学院,重庆 400045; 2. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045; 3. 深圳大学 土木与交通工程学院,广东 深圳 518060)
Author(s):
LIU Jie-peng1,2, CUI Na1,2, ZHOU Xu-hong1,2, LI Dong-sheng3, CHENG Guo-zhong1,2, ZENG Yan1,2, CAO Yu-xing1,2
(1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China; 3. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China)
关键词:
尺寸质量 智能检测 三维激光扫描技术 点云数据 逆向建模
Keywords:
dimensional quality intelligent inspection 3D laser scanning technology point cloud data reverse modeling
分类号:
TU973.2
DOI:
10.19815/j.jace.2021.07148
文献标志码:
A
摘要:
基于三维激光扫描技术,提出了一种智能化、全流程的房屋尺寸质量检测方法,包括点云数据配准、点云数据轻量化、房屋逆向建模及尺寸质量检测。通过点云数据映射全景图、基于YOLO v5神经网络模型的标靶纸目标检测以及基于模板匹配方法的标靶中心估计等步骤,可实现多站点云数据之间的自动配准; 通过可分解图滤波算法进行点云数据重采样,实现数据轻量化并提高运行速度; 针对房屋整体点云数据,提出了集点云数据分割、表面重建、尺寸质量检测于一体的综合算法。结果表明:基于标靶纸的点云配准方法能够自动完成各站点云数据的配准,得到完整房屋点云数据; 点云数据分割技术能够分离不同墙面、楼板底面和顶面的点云数据; 表面重建算法能够生成房屋的实体模型; 尺寸质量检测技术能够自动计算出表面的平整度和垂直度; 提出的房屋尺寸质量检测方法全面、可行,且能够适用不同的户型,研究成果以期替代人工测量完成房屋的平整度与垂直度的检测。
Abstract:
An intelligent and full-process method for dimensional quality inspection of houses was proposed based on three dimensional(3D)laser scanning technology, including point cloud data(PCD)registration, PCD simplification, reverse modeling and dimensional quality inspection of houses. PCDs obtained by multi-site were automatically registered through panoramas mapped by PCDs, checkerboard targets detection using YOLO v5 neural network model and target centers estimation using template matching algorithm. In order to accomplish the simplification and accelerate runtime, decomposed graph filtering algorithm was adopted to resample the PCDs. A comprehensive algorithm integrating PCD segmentation, surface reconstruction and dimensional quality inspection was proposed for the registered PCD of houses. The results show that the checkerboard targets-based registration method can register the PCDs of each site automatically and obtain the complete PCD of houses. The PCDs of wall, floor and ceiling can be separated by the PCD segmentation technique and solid model can be built using the surface reconstruction algorithm. Flatness and verticality can be computed by the dimensional quality inspection technique. The proposed intelligent inspection method for the dimensional quality of houses is comprehensive, feasible and applicable to different house types. The research achievements contribute to replace manual measurement to achieve the inspection of flatness and verticality.

参考文献/References:

[1] 建筑地面工程施工质量验收规范:GB 50209—2010[S].北京:中国计划出版社,2010.
Code of Acceptance of Construction Quality of Building Ground:GB 50209—2010[S].Beijing:China Planning Press,2010.
[2]混凝土结构工程施工质量验收规范:GB 50204—2015[S].北京:中国建筑工业出版社,2015.
Code for Quality Acceptance of Concrete Structure Construction:GB 50204—2015[S].Beijing:China Architecture & Building Press,2015.
[3]PURI N S,VALERO E,TURKAN Y,et al.Assessment of Compliance of Dimensional Tolerances in Concrete Slabs Using TLS Data and the 2D Continuous Wavelet Transform[J].Automation in Construction,2018,94:62-72.
[4]PURI N S,TURKAN Y.A Comparison of TLS-based and ALS-based Techniques for Concrete Floor Waviness Assessment[C]//ISARC.Proceedings of the 31th International Symposium on Automation and Robotics in Construction.Banff:ISARC,2019:1142-1148.
[5]BOSCHE F,GUENET E.Automating Surface Flatness Control Using Terrestrial Laser Scanning and Building Information Models[J].Automation in Construction,2014,44:212-226.
[6]Faro Inc.Focus-3D Technical Specification[M].Lake Mary:Faro Inc,2018.
[7]WANG Q,SOHN H,CHENG J C P.Automatic As-built BIM Creation of Precast Concrete Bridge Deck Panels Using Laser Scan Data[J].Journal of Computing in Civil Engineering,2018,32(3):04018011.
[8]REDMON J,FARHADI A.Yolov3:An Incremental Improvement[J].ArXiv E-prints,2018:1804.02767.
[9]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:Optimal Speed and Accuracy of Object Detection[J].ArXiv,2020:2004.10934.
[10]JOCHER G,STOKEN A,BOROVEC J,et al.Ultralytics/yolov5:v5.0[EB/OL].(2021-04-11)[2021-06-12].https://doi.org/10.5281/zenodo.4679653.
[11]FISCHLER M A,BOLLES R C.Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J].Communications of the ACM,1981,24(6):381-395.
[12]WOLD S,ESBENSEN K,GELADI P.Principal Component Analysis[J].Chemometrics and Intelligent Laboratory Systems,1987,2(1/2/3):37-52.
[13]YIN H,GONG Y H,QIU G P.Side Window Filtering[C]//IEEE.Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:8758-8766.
[14]GOWER J C,DIJKSTERHUIS G B.Procrustes Problems[M].Oxford:Oxford University Press,2004.
[15]CHEN S,TIAN D,FENG C,et al.Fast Resampling of Three-dimensional Point Clouds via Graphs[J].IEEE Transactions on Signal Processing,2018,66(3):666-681.
[16]WU Z,ZENG Y,LI D S,et al.High-volume Point Cloud Data Simplification Based on Decomposed Graph Filtering[J].Automation in Construction,2021,129:103815.
[17]ESTER M,KRIEGEL H P,SANDER J,et al.A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//SIMOUDIS E.Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996:226-231.
[18]SHEWCHUK J R.Delaunay Refinement Algorithms for Triangular Mesh Generation[J].Computational Geometry,2002,22(1/2/3):21-74.
[19]CARR J C,BEATSON R K,CHERRIE J B,et al.Reconstruction and Representation of 3D Objects with Radial Basis Functions[C]//SIGGRAPH.Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques.Los Angeles:ACM Press,2001:67-76.
[20]BERNARDINI F,MITTLEMAN J,RUSHMEIER H,et al.The Ball-pivoting Algorithm for Surface Reconstruction[J].IEEE Transactions on Visualization and Computer Graphics,1999,5(4):349-359.
[21]李晶晶,范大昭,耿弘毅,等.城市点云的区域生长三角网构建方法[J].测绘科学技术学报,2016,33(1):65-70.
LI Jing-jing,FAN Da-zhao,GENG Hong-yi,et al.Triangular Mesh Construction for City Points Based on Region Growing[J].Journal of Geomatics Science and Technology,2016,33(1):65-70.
[22]SUZUKI S,BE K.Topological Structural Analysis of Digitized Binary Images by Border Following[J].Computer Vision,Graphics,and Image Processing,1985,30(1):32-46.
[23]DOUGLAS D H,PEUCKER T K.Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature[J].Cartographica:The International Journal for Geographic Information and Geovisualization,1973,10(2):112-122.
[24]LI D S,LIU J P,FENG L,et al.Terrestrial Laser Scanning Assisted Flatness Quality Assessment for Two Different Types of Concrete Surfaces[J].Measurement,2020,154:107436.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-07-30
基金项目:国家自然科学基金联合基金项目(U20A20312); 国家自然科学基金青年科学基金项目(52108283)
作者简介:刘界鹏(1978-),男,山东青岛人,教授,博士研究生导师,工学博士,E-mail:liujp@cqu.edu.cn。
通信作者:李东声(1994-),男,贵州织金人,工学博士,博士后,E-mail:lds@cqu.edu.cn。
更新日期/Last Update: 2022-07-10