[1] 方 明,孙腾腾,邵 桢.基于改进YOLOv2的快速安全帽佩戴情况检测[J].光学精密工程,2019,27(5):1196-1205.
FANG Ming,SUN Teng-teng,SHAO Zhen.Fast Helmet-wearing-condition Detection Based on Improved YOLOv2[J].Optics and Precision Engineering,2019,27(5):1196-1205.
[2]孟诗乔,张啸天,乔甦阳,等.基于深度学习的网格优化裂缝检测模型研究[J].建筑结构学报,2020,41(增2):404-410.
MENG Shi-qiao,ZHANG Xiao-tian,QIAO Su-yang,et al.Research on Grid Optimized Crack Detection Model Based on Deep Learning[J].Journal of Building Structures,2020,41(S2):404-410.
[3]李书进,赵 源,孔 凡,等.卷积神经网络在结构损伤诊断中的应用[J].建筑科学与工程学报,2020,37(6):29-37.
LI Shu-jin,ZHAO Yuan.KONG Fan,et al.Application of Convolutional Neural Network in Structural Damage Identification[J].Journal of Architecture and Civil Engineering,2020,37(6):29-37.
[4]黄宏伟,李庆桐.基于深度学习的盾构隧道渗漏水病害图像识别[J].岩石力学与工程学报,2017,36(12):2861-2871.
HUANG Hong-wei,LI Qing-tong.Image Recognition for Water Leakage in Shield Tunnel Based on Deep Learning[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(12):2861-2871.
[5]薛亚东,李宜城.基于深度学习的盾构隧道衬砌病害识别方法[J].湖南大学学报(自然科学版),2018,45(3):100-109.
XUE Ya-dong,LI Yi-cheng.A Method of Disease Recognition for Shield Tunnel Lining Based on Deep Learning[J].Journal of Hunan University(Natural Sciences),2018,45(3):100-109.
[6]叶肖伟,张小明,倪一清,等.基于机器视觉技术的桥梁挠度测试方法[J].浙江大学学报(工学版),2014,48(5):813-819.
YE Xiao-wei,ZHANG Xiao-ming,NI Yi-qing,et al.Bridge Deflection Measurement Method Based on Machine Vision Technology[J].Journal of Zhejiang University(Engineering Science),2014,48(5):813-819.
[7]AN X H,ZHOU L,LIU Z G,et al.Dataset and Benchmark for Detecting Moving Objects in Construction Sites[J].Automation in Construction,2021,122:103482.
[8]XIAO B,KANG S C.Development of an Image Data Set of Construction Machines for Deep Learning Object Detection[J].Journal of Computing in Civil Engineering,2021,35(2):05020005.
[9]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-scale Image Recognition[J].arXiv:1049.1556.
[10]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//IEEE.Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2014:580-587.
[11]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//IEEE.Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE,2016:770-778.
[12]LI Z,PENG C,YU G,et al.DetNet:Design Backbone for Object Detection[C]//FERRARI V,HEBERT M,SMINCHISESCU C,et al.Proceedings of the 15th European Conference.Munich:LNCS,2018:339-354.
[13]陈伟华,南鹏飞,闫孝姮,等.基于深度学习的采煤机截割轨迹预测及模型优化[J].煤炭学报,2020,45(12):4209-4215.
CHEN Wei-hua,NAN Peng-fei,YAN Xiao-heng,et al.Prediction and Model Optimization of Shearer Memory Cutting Trajectory Based on Deep Learning[J].Journal of China Coal Society,2020,45(12):4209-4215.
[14]张 繁,王 通,黄可蒙,等.基于Unity3D的改进实时红外仿真系统[J].计算机辅助设计与图形学学报,2018,30(7):1177-1186.
ZHANG Fan,WANG Tong,HUANG Ke-meng,et al.One Improved Real-time Infrared Simulation System Based on Unity3D[J].Journal of Computer-aided Design & Computer Graphics,2018,30(7):1177-1186.
[15]QIU W,ZHONG F,YI Z,et al.UnrealCV:Virtual Worlds for Computer Vision[C]//LIU Q,LIENHART R,WANG H H.Proceedings of the 25th ACM International Conference on Multimedia.New York:Association for Computing Machinery,2017:1221-1224.
[16]张素兰,郭 平,张继福,等.图像语义自动标注及其粒度分析方法[J].自动化学报,2012,38(5):688-697.
ZHANG Su-lan,GUO Ping,ZHANG Ji-fu,et al.Automatic Semantic Image Annotation with Granular Analysis Method[J].Acta Automatica Sinica,2012,38(5):688-697.
[17]高 慧,张继威,来 扬,等.深度学习的人体图像半自动标注系统[J].北京邮电大学学报,2021,44(1):104-109.
GAO Hui,ZHANG Ji-wei,LAI Yang,et al.Deep Learning Based Semi-automatic Labeling System for Human Images[J].Journal of Beijing University of Posts and Telecommunications,2021,44(1):104-109.
[18]TAN M X,PANG R M,LE Q V.EfficientDet:Scalable and Efficient Object Detection[C]//IEEE.Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:10778-10787.
[19]柯圣财,赵永威,李弼程,等.基于卷积神经网络和监督核哈希的图像检索方法[J].电子学报,2017,45(1):157-163.
KE Sheng-cai,ZHAO Yong-wei,LI Bi-cheng,et al.Image Retrieval Based on Convolutional Neural Network and Kernel-Based Supervised Hashing[J].Acta Electronica Sinica,2017,45(1):157-163.
[20]刘 洋,战荫伟.基于深度学习的小目标检测算法综述[J].计算机工程与应用,2021,57(2):37-48.
LIU Yang,ZHAN Yin-wei.Survey of Small Object Detection Algorithms Based on Deep Learning[J].Computer Engineering and Applications,2021,57(2):37-48.
[21]刘金杉,李元海,卢昱杰,等.基于深度学习的隧道衬砌表观病害模拟检测系统[J/OL].哈尔滨工业大学学报:1-10[2022-02-14].http://kns.cnki.net/kcms/detail/23.1235.T. 20220112.0853.002.html.
LIU Jin-shan,LI Yuan-hai,LU Yu-jie, et al.Tunnel Lining Surface Defect Simulation and Detection System Based on Deep Learning[J/OL].Journal of Harbin Institute of Technology:1-10[2022-02-14].http://kns.cnki.net/kcms/detail/23.1235.T.20220112.0853.002.html.
[22]卫 星,李 佳,孙 晓,等.基于混合生成对抗网络的多视角图像生成算法[J].自动化学报,2021,47(11):2623-2636.
WEI Xing,LI Jia,SUN Xiao,et al.Cross-view Image Generation via Mixture Generative Adversarial Network[J].Acta Automatica Sinica,2021,47(11):2623-2636.
[1]李书进,赵 源,孔 凡,等.卷积神经网络在结构损伤诊断中的应用[J].建筑科学与工程学报,2020,37(06):29.
LI Shu-jin,ZHAO Yuan,KONG Fan,et al.Application of Convolutional Neural Network in Structural
Damage Identification[J].Journal of Architecture and Civil Engineering,2020,37(04):29.
[2]杨 铄,许清风,王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报,2022,39(04):38.[doi:10.19815/j.jace.2022.02043]
YANG Shuo,XU Qing-feng,WANG Zhuo-lin.Research Progress on Structural Damage Detection Based on Convolutional Neural Networks[J].Journal of Architecture and Civil Engineering,2022,39(04):38.[doi:10.19815/j.jace.2022.02043]