|本期目录/Table of Contents|

[1]惠记庄,樊博涵,丁 凯,等.基于虚拟现实的钢结构桥梁装配化施工仿真系统[J].建筑科学与工程学报,2022,39(04):108-116.[doi:10.19815/j.jace.2022.03020]
 HUI Ji-zhuang,FAN Bo-han,DING Kai,et al.Simulation System of Steel Bridge Prefabricated Construction Based on Virtual Reality[J].Journal of Architecture and Civil Engineering,2022,39(04):108-116.[doi:10.19815/j.jace.2022.03020]
点击复制

基于虚拟现实的钢结构桥梁装配化施工仿真系统(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年04期
页码:
108-116
栏目:
出版日期:
2022-07-12

文章信息/Info

Title:
Simulation System of Steel Bridge Prefabricated Construction Based on Virtual Reality
文章编号:
1673-2049(2022)04-0108-09
作者:
惠记庄1,2,樊博涵1,2,丁 凯1,2,程旭东1,2,刘永健2,程 高2
(1. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064; 2. 陕西省“四主体一联合”桥梁工程智能建造技术校企联合研究中心,陕西 西安 710064)
Author(s):
HUI Ji-zhuang1,2, FAN Bo-han1,2, DING Kai1,2, CHENG Xu-dong1,2, LIU Yong-jian2, CHENG Gao2
(1. Key Laboratory of Road Construction Technology and Equipment of Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Shaanxi Province “Four Bodies-One Union” College-Enterprise Union Research Center of Bridge Engineering Intelligent Construction Technology, Xi'an 710064, Shaanxi, China)
关键词:
Unity3D 钢结构桥梁 虚拟现实 人机交互
Keywords:
Unity3D steel bridge virtual reality human-computer interaction
分类号:
TU741
DOI:
10.19815/j.jace.2022.03020
文献标志码:
A
摘要:
为提高钢结构桥梁装配质量,降低装配风险,使用SoidWorks和3ds Max软件建立钢结构桥梁施工场景模型,采用C#语言编写装配系统的核心脚本,提出并实现系统UI设计方案,结合Steam VR 2.0插件,以实际工程建设项目作为仿真分析对象,研究虚拟现实技术在钢结构桥梁装配过程中的应用。基于Unity3D虚拟引擎平台,设计并开发第一人称视角的沉浸式钢桥虚拟装配系统,采用HTC Vive外接式头戴设备对接系统调试运行,最终实现人机交互操作。结果表明:钢桥吊装施工过程中,汽车起重机吊臂最大工作长度为33.554 m,最大起升高度为12.365 m,主臂最大仰角为62.34°,各钢桥节段关键参数均未超过额定值,保证了施工质量和结构安全; 施工起重机在起吊阶段最大起升高度应高于6.7 m,防止构件与各钢桥节段碰撞干涉; 在此基础上,提高节段2的起升高度可排除桥梁节段间碰撞危险; 用户进行虚拟装配操作,验证了射线检测与UI交互功能的可行性; 现场应用表明所设计的系统稳定可靠,系统可预测施工过程风险并优化施工方案,提升了钢桥施工过程中智能化和自动化水平。
Abstract:
In order to improve the assembly quality of steel bridges and reduce assembly risks, the SolidWorks and 3ds Max software were used to build the construction scene model of steel bridges, C# language was adopted to write the core script for realizing the assembly system, and the design scheme of system UI was proposed and realized. Combined with Steam VR 2.0 plug-in unit, the virtual reality technology application in the assembly process of steel bridge was studied with taking actual engineering construction project as simulation analysis object. Based on Unity3D virtual engine platform, an immersive virtual assembly system from a first-person perspective for prefabricated steel bridges was designed and developed. HTC Vive external headset docking system to debug and run was used, and the human-computer interaction was finally realized. The results show that the maximum working length of bridge crane boom is 33.554 m, the maximum lifting height is 12.365 m, the maximum elevation angle of main boom is 62.34°, and the key parameters of each steel bridge segment do not exceed the rated value, which guaranteed the construction quality and structure safety. During the lifting process, the maximum lifting height of crane should be higher than 6.7 m, so as to prevent the collision and interference between the crane components and each steel bridge segment. On this basis, the lifting height of the second segment is increased to eliminate the risks of collision between bridge segments. The users perform the virtual assembly operations, which verifies feasibility of ray detection and UI interaction. The on-site applications show that the designed system is stable and reliable. The system can predict construction process risks, optimize construction schemes, and improve level of intelligence and automation in the construction process of steel bridges.

参考文献/References:

[1] MARTINEZ-MUNOZ D,MARTI J V,YEPES V.Steel-concrete Composite Bridges:Design,Life Cycle Assessment,Maintenance,and Decision-making[J].Advances in Civil Engineering,2020,2020:8823370.
[2]BROZZETTI J.Design Development of Steel-concrete Composite Bridges in France[J].Journal of Constructional Steel Research,2000,55(1/2/3):229-243.
[3]张清华,劳武略,崔 闯,等.钢结构桥梁疲劳2020年度研究进展[J].土木与环境工程学报(中英文),2021,43(增1):79-90.
ZHANG Qing-hua,LAO Wu-lue,CUI Chuang,et al.State-of-the-art Review of Fatigue of Steel Bridge in 2020[J].Journal of Civil and Environmental Engineering,2021,43(S1):79-90.
[4]苏权科,谢红兵.港珠澳大桥钢结构桥梁建设综述[J].中国公路学报,2016,29(12):1-9.
SU Quan-ke,XIE Hong-bing.Summary of Steel Bridge Construction of Hong Kong-Zhuhai-Macao Bridge[J].China Journal of Highway and Transport,2016,29(12):1-9.
[5]WATANABE T,SOGABE M,ASANUMA K,et al.Estimation of Structure-borne Noise Reduction Effect of Steel Railway Bridge Equipped with Floating Ladder Track and Floating Reinforced-concrete Deck[J].Journal of Mechanical Systems for Transportation & Logistics,2010,3(1):83-91.
[6]BALOGUN T B,TOMOR A,LAMOND J,et al.Sustainability of Bridge Maintenance[J].Bridge Engineering,2018,172(1):1-27.
[7]吴艺伟,葛桐旭,胡志超.钢结构桥梁的发展与应用趋势[J].科技风,2017(14):96.
WU Yi-wei,GE Tong-xu,HU Zhi-chao.Development and Application Trend of Steel Structure Bridges[J].Technology Wind,2017(14):96.
[8]梁 栋,赵 恺,马印怀,等.基于3D激光扫描的钢桥塔节段虚拟装配方法[J].桥梁建设,2021,51(3):62-71.
LIANG Dong,ZHAO Kai,MA Yin-huai,et al.Virtual Steel Pylon Segments Assembly Method Based on 3D Laser Scanning[J].Bridge Construction,2021,51(3):62-71.
[9]李 丽,潘川庚,戴建锋,等.装配式公路钢桥机械化架设及集装化吊运机具研制与应用[J].公路,2010(7):46-54.
LI Li,PAN Chuan-geng,DAI Jian-feng,et al.Development and Application of Mechanized Construction and Unitized Lifting Machines for Fabricated Highway Steel Bridges[J].Highway,2010(7):46-54.
[10]黄国平.大跨度装配式公路钢桥拼装与架设施工技术[J].门窗,2019(19):105,107.
HUANG Guo-ping.Construction Technology of Assembly and Erection of Long-span Fabricated Highway Steel Bridge[J].Doors & Windows,2019(19):105,107.
[11]《中国公路学报》编辑部.中国桥梁工程学术研究综述·2014[J].中国公路学报,2014,27(5):1-96.
Editorial Department of China Journal of Highway and Transport.Review on China's Bridge Engineering Research:2014[J].China Journal of Highway and Transport,2014,27(5):1-96.
[12]MARTINS O P,SAMPAIO A Z.Bridge Launching Construction Visualized in a Virtual Environment[J].International Journal of Virtual Reality,2011,10(2):49-56.
[13]OMER M,MARGETTS L,MOSLEH M H,et al. Inspection of Concrete Bridge Structures:A Case Study Comparing Conventional Techniques with a Virtual Reality Approach[J].Journal of Bridge Engineering,2021,26(10):05021010.
[14]SAMPAIO A Z,MARTINS O P.The Application of Virtual Reality Technology in the Construction of Bridge:The Cantilever and Incremental Launching Methods[J].Automation in Construction,2014,37:58-67.
[15]王长波,杨克俭.基于OpenGL的桥梁视景仿真系统设计[J].交通与计算机,2001,19(增1):79-82.
WANG Chang-bo,YANG Ke-jian.The Design of Bridge Simulation System Based on OpenGL[J].Computer and Communications,2001,19(S1):79-82.
[16]陈一骏,王月华,曹 菲,等.桥梁虚拟现实系统的设计[J].交通标准化,2005,33(8):100-103.
CHEN Yi-jun,WANG Yue-hua,CAO Fei,et al.Application of Virtual Reality in Bridge Designing[J].Communications Standardization,2005,33(8):100-103.
[17]董忠波,李富年,杜荣武.融合虚拟现实技术的桥梁监测系统设计与实现[J].现代电子技术,2019,42(16):44-48.
DONG Zhong-bo,LI Fu-nian,DU Rong-wu.Design and Implementation of Bridge Monitoring System Fusing with Virtual Reality Technology[J].Modern Electronics Technique,2019,42(16):44-48.
[18]文少军.VR技术在桥梁施工进度监测中的应用研究[J].西部交通科技,2019(1):62-65.
WEN Shao-jun.Application Research of VR Technology in Bridge Construction Progress Monitoring[J].Western China Communications Science & Technology,2019(1):62-65.
[19]王瑜晨.基于Unity 3D的桥梁VR仿真设计[J].中国新技术新产品,2019(1):17-18.
WANG Yu-chen.VR Simulation Design of Bridge Based on Unity 3D[J].New Technology & New Products of China,2019(1):17-18.
[20]朱惠娟.基于Unity3D的虚拟漫游系统[J].计算机系统应用,2012,21(10):36-39,65.
ZHU Hui-juan.Virtual Roaming System Based on Unity3D[J].Computer Systems & Applications,2012,21(10):36-39,65.
[21]丁毓峰,徐 鑫,闵新普,等.基于Unity3D的机电产品虚拟拆装实验系统[J].实验室研究与探索,2020,39(3):118-122,137.
DING Yu-feng,XU Xin,MIN Xin-pu,et al.Virtual Assembly and Disassembly Experimental System for Mechanical and Electrical Products Based on Unity 3D[J].Research and Exploration in Laboratory,2020,39(3):118-122,137.
[22]HELLMUTH R,FROHNMAYER J.Requirements Engineering for Stakeholders of Factory Conversion:LoD Visualization of a Research Factory via AR Application[J].Procedia Manufacturing,2020,45:25-30.
[23]王文明,侯春来,武振宇,等.海洋无隔水管修井的数字孪生框架与可视化交互[J].计算机集成制造系统,2021,27(2):423-431.
WANG Wen-ming,HOU Chun-lai,WU Zhen-yu,et al.Frame and Visualization for Digital Twin of Marine Riserless Well Intervention[J].Computer Integrated Manufacturing Systems,2021,27(2):423-431.
[24]陈 果,刘桂芹.基于Unity3D煤矿钻机虚拟装配培训系统开发[J].包装工程,2022,43(12):106-112.
CHEN Guo,LIU Gui-qin.Development and Application of Virtual Assembly Training System of Mine Drilling Rig Based on Unity3D[J].Packaging Engineering,2022,43(12):106-112.
[25]GAFFARY Y,LE GOUIS B,MARCHAL M,et al.AR Feels “Softer” than VR:Haptic Perception of Stiffness in Augmented Versus Virtual Reality[J].IEEE Transactions on Visualization and Computer Graphics,2017,23(11):2372-2377.
[26]蔡 宝,周英敏,王彬杰,等.基于Unity3D的减速器设计及展示系统研究[J].现代制造工程,2022(1):19-25.
CAI Bao,ZHOU Ying-min,WANG Bin-jie,et al.Research on Reducer Design and Display System Based on Unity3D[J].Modern Manufacturing Engineering,2022(1):19-25.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-03-11
基金项目:西藏天路创新发展基金重点项目(XZ2019TL-G-02); 陕西省交通运输厅科研项目(17-21K)
作者简介:惠记庄(1963-),男,陕西渭南人,教授,博士研究生导师,工学博士,E-mail:huijz6363@chd.edu.cn。
通信作者:丁 凯(1989-),男,江苏淮安人,副教授,工学博士,E-mail:kding@chd.edu.cn。
更新日期/Last Update: 2022-07-10