|本期目录/Table of Contents|

[1]聂少锋,黄 鑫,王 硕,等.低层双齿大棚屋面风致积雪分布研究[J].建筑科学与工程学报,2022,39(05):94-103.[doi:10.19815/j.jace.2021.04063]
 NIE Shao-feng,HUANG Xin,WANG Shuo,et al.Investigation on Roof Wind-induced Snow Distribution of Low-rise Double-tooth Greenhouses[J].Journal of Architecture and Civil Engineering,2022,39(05):94-103.[doi:10.19815/j.jace.2021.04063]
点击复制

低层双齿大棚屋面风致积雪分布研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年05期
页码:
94-103
栏目:
结构工程
出版日期:
2022-09-30

文章信息/Info

Title:
Investigation on Roof Wind-induced Snow Distribution of Low-rise Double-tooth Greenhouses
文章编号:
1673-2049(2022)05-0094-10
作者:
聂少锋1,黄 鑫2,王 硕1,黄成杰3
(1. 长安大学 建筑工程学院,陕西 西安 710061; 2. 奥意建筑工程设计有限公司,广东 深圳 518031; 3. 新力控股(集团)有限公司,江西 南昌 310013)
Author(s):
NIE Shao-feng1, HUANG Xin2, WANG Shuo1, HUANG Cheng-jie3
(1. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China; 2. A+E Design Co., Ltd., Shenzhen 518031, Guangdong, China; 3. Sinic Holdings(Group)Company Limited, Nanchang 310013, Jiangxi, China)
关键词:
低层建筑 双齿大棚 多相流模型 数值分析 风致积雪分布
Keywords:
low-rise building double-tooth greenhouse multiphase flow model numerical analysis wind-reduced snow distribution
分类号:
TU375
DOI:
10.19815/j.jace.2021.04063
文献标志码:
A
摘要:
为研究低层双齿大棚屋面的风致积雪分布规律,基于FLUENT软件中的Mixture多相流模型,建立了风雪两相流场模型。为验证风雪两相流场的准确性并选择合适的湍流模型,采用k-w,SST k-w和k-kl-w湍流模型分别对立方体周围积雪分布进行数值分析,并将数值分析结果与试验结果进行对比以验证数值方法的正确性,进而详细研究了风速、风向角、屋面坡度比和结构双齿长宽比对低层双齿大棚屋面风致积雪分布的影响。结果表明:风雪两相流模型和k-kl-w湍流模型建立的风雪两相流流场可以较好地反映低层双齿大棚屋面的积雪分布情况; 大棚屋面积雪厚度随着风速和屋面坡度比增大而减小,且屋面坡度比的影响程度较风速与风向角的影响小; 大棚屋面积雪受侵蚀和堆积区域位置随风向角变化而变化; 大棚结构长宽比对屋面积雪分布的影响较小; 低层三齿大棚屋面和低层四齿大棚屋面的屋面积雪分布系数可参考低层双齿大棚屋面; 提出的低层双齿大棚屋面积雪不均匀分布系数可为低层双齿大棚屋面的冬季防雪灾设计提供参考。
Abstract:
In order to study the wind-induced snow cover on the roof of low-rise double-tooth greenhouse, based on the Fluent, the Mixture multiphase flow model was selected, the wind and snow two-phase flow models were established. To verify the accuracy of the wind and snow two-phase flow field and choose the reasonable turbulence model, the k-w, SST k-w and k-kl-w turbulence models were used to simulate the snow distribution around the cube. Then, the numerical results were compared with the test results to verify the correctness of the numerical models. The influences of wind speed, the wind direction, the roof slope ratio, and the length-span ratio on the distribution of wind-reduced snow cover on the roof of low-rise double-tooth greenhouses were studied in detail. The results show that the distribution of wind-reduced snow cover on the roof of the low-rise double-toothed greenhouse can well reflected through the wind and snow two-phase flow model and two-phase flow field established using k-kl-w turbulence model; the snow thickness on the roof of the greenhouse decreases with the increase of the wind speed and the roof slope ratio, however, the influence degree of roof slope ratio is smaller than that of wind speed and wind direction; the snow erosion and accumulation position on the roof of the greenhouse changes with the wind direction; the length-span ratio of the greenhouse structure has little effect on the distribution of snow on the roof. The snow distribution coefficient of the low-rise three-tooth greenhouse roof and the low-rise four-tooth greenhouse roof can refer to the low-rise double-tooth greenhouse roof; the proposed uneven distribution coefficients of snow on the roof of low-rise double-tooth greenhouses can provide a reference for winter snow disaster prevention design of the low-rise double-tooth greenhouses roof.

参考文献/References:

[1] ALHAJRAF S.Computational Fluid Dynamic Modeling of Drifting Particles at Porous Fences[J].Environmental Modelling & Software,2004,19(2):163-170.
[2]赵 雷,余志祥,齐 欣,等.低矮建筑屋盖风雪流作用场地实测与数值模拟[J].振动与冲击,2017,36(22):225-231,244.
ZHAO Lei,YU Zhi-xiang,QI Xin,et al.Field Measurements and Numerical Simulation of Snowdrift on Low-rise Buildings[J].Journal of Vibration and Shock,2017,36(22):225-231,244.
[3]BEYERS J H M,HARMS T M.Outdoors Modelling of Snow Drifting at SANAE Ⅳ Researcher Station,Antarctica[J].Journal of Wind Engineering and Industrial Aerodynamics,2003,91(4):551-569.
[4]MICHAEL O,ATHUR D,JANINE D T.Snow Drifting Transport Rates from Water Flume Simulation[J].Journal of Wind Engineering and Industrial Aerodynamics,2004,92(14/15):1245-1264.
[5]OZMEN Y,BAYDAR E,BEECK J V.Wind Flow over the Low-rise Building Models with Gabled Roofs Having Different Pitch Angles[J].Building and Environment,2015,95:63-74.
[6]王卫华,廖海黎,李明水.风致屋面积雪分布风洞试验研究[J].建筑结构学报,2014,35(5):135-141.
WANG Wei-hua,LIAO Hai-li,LI Ming-shui.Wind Tunnel Test on Wind-induced Roof Snow Distribution[J].Journal of Building Structures,2014,35(5):135-141.
[7]孙晓颖,洪财滨,武 岳,等.建筑物周边风致雪漂移的数值模拟研究[J].工程力学,2014,31(4):141-146.
SUN Xiao-ying,HONG Cai-bin,WU Yue,et al.Numerical Simulation of Snow Drifting Around Building Model[J].Engineering Mechanics,2014,31(4):141-146.
[8]颜卫亨,姬明辉,代 鹏,等.攒尖四坡屋面风致雪漂移的数值模拟[J].计算力学学报,2020,37(5):585-595.
YAN Wei-heng,JI Ming-hui,DAI Peng,et al.Numerical Simulation of Snow Drifting on Pyramidal Hipped Roof[J].Chinese Journal of Computational Mechanics,2020,37(5):585-595.
[9]周暄毅,张运清,顾 明,等.屋面滑移雪荷载的简化计算方法[J].同济大学学报:自然科学版,2014,42(12):1833-1839.
ZHOU Xuan-yi,ZHANG Yun-qing,GU Ming,et al.Simplified Calculation Formula on Sliding Snow Load on Roof[J].Journal of Tongji University:Natural Science,2014,42(12):1833-1839.
[10]ZHOU X Y,ZHANG Y,KANG L Q,et al.CFD Simulation of Snow Redistribution on Gable Roofs:Impact of Roof Slope[J].Journal of Wind Engineering and Industrial Aerodynamics,2019,185:16-32.
[11]聂少锋,周绪红,陶 莹,等.平面T形低矮房屋风荷载特性风洞试验与数值分析[J].建筑科学与工程学报,2016,33(2):31-40.
NIE Shao-feng,ZHOU Xu-hong,TAO Ying,et al.Wind Tunnel Test and Numerical Analysis on Wind Load Characteristics of Plan T-shaped Low-rise Buildings[J].Journal of Architecture and Civil Engineering,2016,33(2):31-40.
[12]建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版社,2012.
Load Code for the Design of Building Structures:GB 50009—2012[S].Beijing:China Architecture & Building Press,2012.
[13]农业温室结构荷载规范:GB/T 51183—2016[S].北京:中国计划出版社,2016.
Code for the Design Load of Horticultural Greenhouse Structures:GB/T 51183—2016[S].Beijing:China Planning Press,2016.
[14]胡 坤,李振北.ANSYS ICEM CFD工程实例详解[M].北京:人民邮电出版社,2014.
HU Kun,LI Zhen-bei.Detailed Explanation of ANSYS ICEM CFD Engineering Examples[M].Beijing:Posts & Telecom Press,2014.
[15]李雪峰.风致建筑屋盖表面及其周边积雪分布研究[D].上海:同济大学,2011.
LI Xue-feng.Research on Snowdrifting on Building Roof and Around Building[D].Shanghai:Tongji University,2011.
[16]种植塑料大棚工程技术规范:GB/T 51057—2015[S].北京:中国计划出版社,2015.
Technical Code for Horticultural Plastic Tunnel Engineering:GB/T 51057—2015[S].Beijing:China Planning Press,2015.
[17]黄本才,汪丛军.结构抗风分析原理及应用[M].2版.上海:同济大学出版社,2008.
HUANG Ben-cai,WANG Cong-jun.Theory and Application Against Wind Load of Structures[M].2nd ed.Shanghai:Tongji University Press,2008.
[18]POMEROY J W,MALE D H.Steady-state Suspension of Snow[J].Journal of Hydrology,1992,136(1/2/3/4):275-301.
[19]张延年.大跨度钢结构屋面风雪荷载[M].北京:科学出版社,2013.
Zhang Yan-nian.Wind and Snow Load on Long-span Steel Structure Roof[M].Beijing:Science Press,2013.
[20]OIKAWA S,TOMABECHI T.Formation Processes of the Deposition and Erosion of Snow Around a Model Building[J].Journal of the Japanese Society of Snow and Ice,2003,65(3):207-218.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-04-19
基金项目:中央高校基本科研业务费专项资金项目(300102289205); 陕西省建设科技计划项目(2014-K14); 陕西省重点研发计划项目(2021SF-519)
作者简介:聂少锋(1981-),男,河北石家庄人,教授,工学博士,E-mail:niesf126@126.com。
通信作者:黄 鑫(1994-),男,山西晋城人,工学硕士,E-mail:1307660175@qq.com。
更新日期/Last Update: 2022-09-30