|本期目录/Table of Contents|

[1]阎 石,王 鲁,崔赛杰,等.基于非线性Lamb波的板状结构微裂缝识别机理与算法[J].建筑科学与工程学报,2022,39(05):113-121.[doi:10.19815/j.jace.2021.02039]
 YAN Shi,WANG Lu,CUI Sai-jie,et al.Microcrack Recognition Mechanism and Algorithm of Plate Structures Based on Nonlinear Lamb Wave[J].Journal of Architecture and Civil Engineering,2022,39(05):113-121.[doi:10.19815/j.jace.2021.02039]
点击复制

基于非线性Lamb波的板状结构微裂缝识别机理与算法(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年05期
页码:
113-121
栏目:
结构工程
出版日期:
2022-09-30

文章信息/Info

Title:
Microcrack Recognition Mechanism and Algorithm of Plate Structures Based on Nonlinear Lamb Wave
文章编号:
1673-2049(2022)05-0113-09
作者:
阎 石1,王 鲁1,2,崔赛杰1,王雪南1,于水旺1
(1. 沈阳建筑大学 土木工程学院,辽宁 沈阳 110168; 2. 菏泽交通投资发展集团有限公司,山东 菏泽 274000)
Author(s):
YAN Shi1, WANG Lu1,2, CUI Sai-jie1, WANG Xue-nan1, YU Shui-wang1
(1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China; 2. Heze Communications Investment Development Group Co., Ltd, Heze 274000, Shandong, China)
关键词:
Lamb波 板状结构 二次谐波 微裂缝 非线性系数 损伤识别算法
Keywords:
Lamb wave plate structure second-order harmonic microcrack nonlinear coefficient damage detection algorithm
分类号:
TU973.2
DOI:
10.19815/j.jace.2021.02039
文献标志码:
A
摘要:
为了研究复合板微小剥离损伤诱发二次谐波机理,提出一种基于超声Lamb波非线性系数的水平向微裂缝识别方法。通过薄板结构的一维波动方程,推导并阐述了非线性系数的概念; 采用有限元数值分析法,研究了基于二次谐波的损伤识别原理,并对复合板微裂缝的宽度、长度和激励信号的幅值、频厚积等参数对超声Lamb波非线性系数β的影响进行模拟分析,通过试验验证了模拟结果的正确性。结果表明:随着微裂纹宽度增加,非线性系数呈非线性减小; 随着微裂纹长度增加,非线性系数值先增加后减小; 随着外部激励幅值的增加,非线性系数值基本不变; 随着频厚积的增加,非线性系数值在结构自振频率对应的频厚积处呈现最大值; 利用非线性系数β能够有效表征非线性应力波与微损伤几何特征之间的关系; 基于超声Lamb波非线性系数的水平向微裂缝识别方法是可行的。
Abstract:
To study the mechanism of second-order harmonic induced by micro-peeling damage of composite plates, a method to identify horizontal microcrack based on ultrasonic Lamb nonlinear coefficient was proposed. The concept of nonlinear coefficient was introduced and deduced through the one-dimensional wave equation of motion. The detection principle of second-order harmonic was studied by using finite element method. The impacts of width and length of composite plate microcrack and amplitude and product of frequency and thickness of excitation signal on the nonlinear coefficient β were simulated and studied. The simulation results were validated through the experiments. The results show that the nonlinear coefficient decreases with the increase of microcrack width. The nonlinear coefficient firstly increases and then decreases with increase of the microcrack length. With increase of the external excitation amplitude, the nonlinear coefficient is basically unchanged. As the product of frequency and thickness increases, the nonlinear coefficient shows the maximum value at the product of frequency and thickness corresponding to the natural frequency of the structure. The relationship between nonlinear stress wave and geometric characteristics of microdamage can be effectively characterized by nonlinear coefficient β. The proposed horizontal microcrack detection method based on ultrasonic Lamb nonlinear coefficient is feasible.

参考文献/References:

[1] 赵一男,公茂盛,杨 游.结构损伤识别方法研究综述[J].世界地震工程,2020,36(2):73-84.
ZHAO Yi-nan,GONG Mao-sheng,YANG You.A Review of Structural Damage Identification Methods[J].World Earthquake Engineering,2020,36(2):73-84.
[2]KACHANOV L M.Separation Failure of Composite Materials[J].Polymer Mechanics,1976,12(5):812-815.
[3]ZHANG Y F,ZHAO J H,CAI C S.Seismic Behavior of Ring Beam Joints Between Concrete-filled Twin Steel Tubes Columns and Reinforced Concrete Beams[J].Engineering Structures,2012,39:1-10.
[4]周正干,刘斯明.非线性无损检测技术的研究、应用和发展[J].机械工程学报,2011,47(8):2-11.
ZHOU Zheng-gan,LIU Si-ming.Nonlinear Ultrasonic Techniques Used in Nondestructive Testing:A Review[J].Journal of Mechanical Engineering,2011,47(8):2-11.
[5]SARAVANOS D A,HEYLIGER P R.Coupled Layerwise Analysis of Composite Beams with Embedded Piezoelectric Sensors and Actuators[J].Journal of Intelligent Material Systems and Structures,1995,6(3):350-363.
[6]刘梦龙,袁慎芳,卿新林,等.采用Lamb波对复合材料板结构进行多损伤检测[J].测控技术,2012,31(增):299-303.
LIU Meng-long,YUAN Shen-fang,QING Xin-lin,et al.Multi-damage Detection in Composite Panel Using Lamb Wave[J].Measurement & Control Technology,2012,31(S):299-303.
[7]GUO N,CAWLEY P.The Interaction of Lamb Waves with Delaminations in Composite Laminates[J].NDT & E International,1996,29(4):246.
[8]SOHN J W,KIM H S.Active Healing of Delaminated Composite Structure Using Piezoelectric Actuator[C]//SPIE.Proceedings of SPIE — The International Society for Optical Engineering.San Diego:SPIE,2014:544-550.
[9]DENG M X.Cumulative Second-harmonic Generation of Lamb-mode Propagation in a Solid Plate[J].Journal of Applied Physics,1999,85(6):3051-3058.
[10]DENG M X.Analysis of Second-harmonic Generation of Lamb Modes Using a Modal Analysis Approach[J].Journal of Applied Physics,2003,94(6):4152-4159.
[11]邓明晰.分层结构中兰姆波二次谐波发生的模式展开分析[J].声学学报,2005,30(2):132-142.
DENG Ming-xi.Modal Expansion Analyses of Second-harmonic Generation of the Lamb Waves in Layered Structures[J].Acta Acustica,2005,30(2):132-142.
[12]邓明晰.兰姆波非线性效应的实验观察(Ⅱ)[J].声学学报,2006,31(1):1-7.
DENG Ming-xi.Experimental Observations of Nonlinear Effects of Lamb Waves(Ⅱ)[J].Acta Acustica,2006,31(1):1-7.
[13]BERMES C,KIM J Y,QU J M,et al.Nonlinear Lamb Waves for the Detection of Material Nonlinearity[J].Mechanical Systems and Signal Processing,2008,22(3):638-646.
[14]李 立,焦敬品,吴 斌,等.结构中微裂纹与超声波的混频非线性作用数值仿真研究[J].计算力学学报,2018,35(6):725-731.
LI Li,JIAO Jing-pin,WU Bin,et al.Numerical Simulation of the Nonlinear Effects of Micro-cracks and Ultrasonic Waves in the Structure[J].Chinese Journal of Computational Mechanics,2018,35(6):725-731.
[15]ZAREMBO L K,KRASIL'NIKOV V A.Nonlinear Phenomena in the Propagation of Elastic Waves in Solids[J].Soviet Physics Uspekhi,1971,13(6):778-797.
[16]陈小佳.基于非线性超声特征的混凝土初始损伤识别和评价研究[D].武汉:武汉理工大学,2007.
CHEN Xiao-jia.Study on Initial Damage Detection and Evaluation of Concrete Based on Nonlinear Acoustic Features[D].Wuhan:Wuhan University of Technology,2007.
[17]胡海峰.板状金属结构健康监测的非线性超声理论与关键技术研究[D].长沙:国防科学技术大学,2011.
HU Hai-feng.Research on Theory and Key Technologies of Nonlinear Ultrasonics for Health Monitoring of Plate-like Metallic Structures[D].Changsha:National University of Defense Technology,2011.
[18]SOROHAN S,CONSTANTIN N,GAVAN M,et al.Extraction of Dispersion Curves for Waves Propagating in Free Complex Waveguides by Standard Finite Element Codes[J].Ultrasonics,2011,51(4):503-515.
[19]杜平安,甘娥忠,于亚婷.有限元法——原理、建模及应用[M].北京:国防工业出版社,2006.
DU Ping-an,GAN E-zhong,YU Ya-ting.Finite Element Method:Principles,Modeling and Applications[M].Beijing:National Defense Industry Press,2006.
[20]吴 斌,周 伟,郑 阳,等.基于波结构的Lamb波单一模态激励仿真[J].无损检测,2011,33(7):1-4,10.
WU Bin,ZHOU Wei,ZHENG Yang,et al.Excitation of Single Mode Lamb Wave Simulation Based on Wave Structure[J].Nondestructive Testing,2011,33(7):1-4,10.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-02-08
基金项目:国家重点研发计划项目(2017YFC1503106)
作者简介:阎 石(1962-),男,辽宁沈阳人,教授,博士研究生导师,工学博士,E-mail:cesyan@sjzu.edu.cn。
更新日期/Last Update: 2022-09-30