|本期目录/Table of Contents|

[1]刘艳芝,胡元涛,柯 珂.火灾后栓接Q690角钢净截面受拉承载力研究[J].建筑科学与工程学报,2022,39(05):132-141.[doi:10.19815/j.jace.2021.05053]
 LIU Yan-zhi,HU Yuan-tao,KE Ke.Study on Net Section Tension Bearing Capacity of Bolted Q690 Angle Steel After Fire[J].Journal of Architecture and Civil Engineering,2022,39(05):132-141.[doi:10.19815/j.jace.2021.05053]
点击复制

火灾后栓接Q690角钢净截面受拉承载力研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年05期
页码:
132-141
栏目:
结构工程
出版日期:
2022-09-30

文章信息/Info

Title:
Study on Net Section Tension Bearing Capacity of Bolted Q690 Angle Steel After Fire
文章编号:
1673-2049(2022)05-0132-10
作者:
刘艳芝1,胡元涛1,柯 珂2
(1. 湖南大学 土木工程学院,湖南 长沙 410082; 2. 重庆大学 土木工程学院,重庆 400045)
Author(s):
LIU Yan-zhi1, HU Yuan-tao1, KE Ke2
(1. College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400045, China)
关键词:
火灾后 高强钢 受拉承载力 有效截面系数 可靠度分析
Keywords:
after fire high strength steel tension bearing capacity effective section coefficient reliability analysis
分类号:
TU391
DOI:
10.19815/j.jace.2021.05053
文献标志码:
A
摘要:
对栓接Q690角钢在火灾后的净截面受拉承载力展开研究,参考过火后高强钢Q690材性试验结果,利用ABAQUS建立栓接Q690角钢的有限元模型,分析面外偏心距、螺栓连接长度、过火温度对火灾后栓接Q690角钢净截面受拉承载力的影响; 将已有相关公式及规范公式的计算结果与模拟得到的角钢支撑受拉极限荷载进行比较; 基于最小二乘法,提出了Q690角钢净截面受拉承载力的有效截面系数公式,对比了数值结果及其他文献试验结果; 基于数值模拟数据库,进行了可靠度分析。结果表明:有效截面系数随着螺栓连接长度的增大而增大,随着面外偏心距的增大而减小,而过火温度对有效截面系数几乎没有影响; 美国规范AISC 360-16对不同过火温度下Q690角钢净截面受拉承载力预测结果偏于不安全,中国现行《钢结构设计标准》预测结果偏于离散; 提出的计算公式对于不同过火温度下的栓接Q690角钢净截面受拉承载力均能进行较好预测; 推荐所提出公式计算火灾后栓接Q690角钢净截面受拉承载力的抗力分项系数为1.061。
Abstract:
The net section tension bearing capacity of bolted Q690 angle steel after fire was investigated. The finite element model of bolted Q690 angle steel was established by ABAQUS with reference to the material property test results of high strength steel Q690 after fire. The effects of out-of-plane eccentricity, bolt connection length and fire temperature on the tension bearing capacity of the net section of bolted Q690 angle steel after fire were analyzed. The calculation results of existing research related formulas and code formulas were compared with the tensile limit load of angle steel support obtained by simulation. Based on the least square method, the effective section coefficient formula of the net section tension bearing capacity of Q690 angle steel was proposed, and the numerical results were compared with the experimental results in other literatures. Based on the numerical simulation database, the reliability analysis was carried out. The results show that the effective section coefficient increases with the increase of bolt connection length and decreases with the increase of out-of-plane eccentricity. The fire temperature has little effect on the effective section coefficient. The net section bearing capacity of Q690 angle steel after different fire temperatures calculated by the formula in AISC 360-16 are unconservative, and the prediction result of the current Chinese Standard for Design of Steel Structures are in discrete distribution. The proposed calculation formula can well predict the net section tension bearing capacity of bolted Q690 angle steel under different fire temperatures. It is recommended that resistance factor of the proposed equation for calculating the net section tension bearing capacity of bolted Q690 angle steel after fire is 1.061.

参考文献/References:

[1] CHESSON E J R,MUNSE W H.Riveted and Bolted Joints:Truss-type Tensile Connections[J].Journal of the Structural Division,1963,89(1):67-106.
[2]MUNSE W H,CHESSON E J R.Riveted and Bolted Joints:Net Section Design[J].Journal of the Structural Division,1963,89(1):107-126.
[3]KULAK G L,WU E Y.Shear Lag in Bolted Angle Tension Members[J].Journal of Structural Engineering,1997,123(9):1144-1152.
[4]DE PAULA V F,BEZERRA L M,MATIAS W T.Efficiency Reduction Due to Shear Lag on Bolted Cold-formed Steel Angles[J].Journal of Constructional Steel Research,2008,64(5):571-583.
[5]PRABHA P,ARUL JAYACHANDRAN S,SARAVANAN M,et al.Prediction of the Tensile Capacity of Cold Formed Angles Experiencing Shear Lag[J].Thin-walled Structures,2011,49(11):1348-1358.
[6]FLEITAS I,BONILLA J,BEZERRA L M,et al.Net Section Resistance in Bolted Cold-formed Steel Angles Under Tension[J].Journal of Constructional Steel Research,2020,167:105841.
[7]MA J L,CHAN T M,YOUNG B.Material Properties and Residual Stresses of Cold-formed High Strength Steel Hollow Sections[J].Journal of Constructional Steel Research,2015,109:152-165.
[8]TEH L H,GILBERT B P.Net Section Tension Capacity of Cold-reduced Sheet Steel Angle Braces Bolted at One Leg[J].Journal of Structural Engineering,2013,139(3):328-337.
[9]KE K,XIONG Y H,YAM M C H,et al.Shear Lag Effect on Ultimate Tensile Capacity of High Strength Steel Angles[J].Journal of Constructional Steel Research,2018,145:300-314.
[10]Structural Use of Steelwork in Building,Part 8:Code of Practice for Fire Resistant Design:BS 5950[S].London:British Standards Institution,2000.
[11]火灾后建筑结构鉴定标准:CECS 252:2009[S].北京:中国计划出版社,2009.
Standard for Building Structural Assessment After Fire:CECS 252:2009[S].Beijing:China Planning Press,2009.
[12]YAM M C,KE K,JIANG B H,et al.Net Section Resistance of Bolted S690 Steel Angles Subjected to Tension[J].Thin-walled Structures,2020,151:106722.
[13]唐圣林.高强螺栓和不锈钢螺栓在高温下与过火后的性能研究及其应力-应变模型的建立[D].重庆:重庆大学,2019.
TANG Sheng-lin.The Investigation on the Properties and Stress-strain Model of High-strength Bolts and Stainless Steel Bolts During and After Fire[D].Chongqing:Chongqing University,2019.
[14]SHI G,ZHU X,BAN H Y.Material Properties and Partial Factors for Resistance of High-strength Steels in China[J].Journal of Constructional Steel Research,2016,121:65-79.
[15]KANG L,GE H B,SUZUKI M,et al.An Average Weight Whole-process Method for Predicting Mechanical and Ductile Fracture Performances of HSS Q690 After a Fire[J].Construction and Building Materials,2018,191:1023-1041.
[16]RICE J R,TRACEY D M.On the Ductile Enlargement of Voids in Triaxial Stress Fields[J].Journal of the Mechanics and Physics of Solids,1969,17(3):201-217.
[17]MYERS A T,KANVINDE A M,DEIERLEIN G G.Calibration of the SMCS Criterion for Ductile Fracture in Steels:Specimen Size Dependence and Parameter Assessment[J].Journal of Engineering Mechanics,2010,136(11):1401-1410.
[18]Dassault Systems Simulia.ABAQUS 6.14:Analysis User's Manual[M].Paris:ABAQUS,2014.
[19]ADEWOLE K K,TEH L H.Predicting Steel Tensile Responses and Fracture Using the Phenomenological Ductile Shear Fracture Model[J].Journal of Materials in Civil Engineering,2017,29(12):06017019.
[20]KANG L,SUZUKI M,GE H B,et al.Experiment of Ductile Fracture Performances of HSSS Q690 After a Fire[J].Journal of Constructional Steel Research,2018,146:109-121.
[21]MOZE P,BEG D.Investigation of High Strength Steel Connections with Several Bolts in Double Shear[J].Journal of Constructional Steel Research,2011,67(3):333-347.
[22]Specification for Structural Steel Buildings:ANSI/AISC 360-16[S].Chicago:American Institute of Steel Construction,2016.
[23]钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2017.
Standard for Design of Steel Structures:GB 50017—2017[S].Beijing:China Architecture & Building Press,2017.
[24]低合金高强度结构钢:GB/T 1591—2008[S].北京:中国标准出版社,2008.
High Strength Low Alloy Structural Steels:GB/T 1591—2008[S].Beijing:Standards Press of China,2008.
[25]施 刚,朱 希.国产高强度结构钢设计指标和可靠度分析[J].建筑结构学报,2016,37(11):144-159.
SHI Gang,ZHU Xi.Design Indexes and Reliability Analysis of Domestic High-strength Structural Steels[J].Journal of Building Structures,2016,37(11):144-159.
[26]戴国欣,夏正中.建筑钢结构适用性分析[J].建筑结构学报,2000,21(3):36-40.
DAI Guo-xin,XIA Zheng-zhong.Serviceability Analysis of Steel Structural Elements of Buildings[J].Journal of Building Structures,2000,21(3):36-40.
[27]建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版社,2012.
Load Code for the Design of Building Structures:GB 50009—2012[S].Beijing:China Architecture & Building Press,2012.
[28]建筑结构可靠度设计统一标准:GB/T 50068—2001[S].北京:中国建筑工业出版社,2001.
Unified Standard for Reliability Design of Building Structures:GB/T 50068—2001[S].Beijing:China Architecture & Building Press,2001.
[29]张 明.结构可靠度分析——方法与程序[M].北京:科学出版社,2009.
ZHANG Ming.Structural Reliability Analysis:Methods and Procedures[M].Beijing:Science Press,2009.

相似文献/References:

[1]陈建锋,周天华.高温后结构钢热变色试验[J].建筑科学与工程学报,2013,30(02):109.
 CHEN Jian-feng,ZHOU Tian-hua.[J].Journal of Architecture and Civil Engineering,2013,30(05):109.

备注/Memo

备注/Memo:
收稿日期:2021-05-09
基金项目:国家自然科学基金项目(52178111,51890902); 湖湘高层次人才聚集工程支持计划创新人才项目(2021RC5005); 高等学校学科创新引智计划项目(B13041)
作者简介:刘艳芝(1982-),女,湖南新化人,副教授,工学博士,E-mail:liuyanzhi@hnu.edu.cn。
通信作者:柯 珂(1987-),男,湖南长沙人,研究员,工学博士,E-mail:ke.ke@cqu.edu.cn。
更新日期/Last Update: 2022-09-30