|本期目录/Table of Contents|

[1]马天忠,孙晨东,高玉广,等.湿陷性黄土场地双向螺旋挤土灌注桩成孔挤密效应与极限承载力试验研究[J].建筑科学与工程学报,2022,39(05):241-250.[doi:10.19815/j.jace.2022.06016]
 MA Tian-zhong,SUN Chen-dong,GAO Yu-guang,et al.Test Research on Soil Compaction Effect and Ultimate Bearing Capacity of Bidirectional Soil Displacement Screw Piles in Collapsible Loess Site[J].Journal of Architecture and Civil Engineering,2022,39(05):241-250.[doi:10.19815/j.jace.2022.06016]
点击复制

湿陷性黄土场地双向螺旋挤土灌注桩成孔挤密效应与极限承载力试验研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
39卷
期数:
2022年05期
页码:
241-250
栏目:
基础工程
出版日期:
2022-09-30

文章信息/Info

Title:
Test Research on Soil Compaction Effect and Ultimate Bearing Capacity of Bidirectional Soil Displacement Screw Piles in Collapsible Loess Site
文章编号:
1673-2049(2022)05-0241-10
作者:
马天忠1,孙晨东1,高玉广2,王正振1,苏天涛1,高 虹1
(1. 兰州理工大学 土木工程学院,甘肃 兰州 730050; 2. 甘肃土木工程科学研究院有限公司,甘肃 兰州 730050)
Author(s):
MA Tian-zhong1, SUN Chen-dong1, GAO Yu-guang2, WANG Zheng-zhen1, SU Tian-tao1, GAO Hong1
(1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; 2. Gansu Civil Engineering Research Institute Co., Ltd., Lanzhou 730050, Gansu, China)
关键词:
双向螺旋挤土灌注桩 湿陷性黄土 挤密效应 极限承载力 原位试验
Keywords:
bidirectional soil displacement screw pile collapsible loess compaction effect ultimate bearing capacity in-situ test
分类号:
TU473
DOI:
10.19815/j.jace.2022.06016
文献标志码:
A
摘要:
为深入研究大厚度自重湿陷性黄土地区双向螺旋挤土灌注桩成孔前后桩周湿陷性黄土挤密范围和挤密效果,揭示双向螺旋挤土灌注桩破坏特征和极限承载力,在兰州榆中某高阶地开展现场双向螺旋挤土成孔试验与静载试验。基于各地规范中双向螺旋挤土灌注桩桩侧极限阻力修正系数和兰州各典型地层现场实测数据,提出了甘肃地区不同土类桩端极限阻力标准值。结果表明:桩周土体地表隆起量与径向水平位移随距离成孔中心越远呈减小趋势,径向影响范围为3D(D为桩径),竖向影响范围为地表以下25 m; 在2D范围内对桩周土体的物理力学指标有明显改善,桩心距越小,挤土成孔对桩周土体的物理特性影响越明显; 同等工况下双向螺旋挤土灌注桩的单桩极限承载力相比长螺旋灌注桩提高25%,且都呈现缓变型破坏特征。
Abstract:
In order to deeply study the compaction range and compaction effect of the soil displacement screw pile on the collapsible loess around the pile before and after the hole forming in the large thickness self weight collapsible loess area, and to reveal the failure characteristics and the ultimate bearing capacity of the bidirectional soil displacement screw pile, the on-site bidirectional spiral soil compaction hole forming test and static load test were carried out in a high-order leveling site in Yuzhong of Lanzhou. Based on the correction coefficient of the ultimate resistance of the pile side of the bidirectional soil displacement screw pile in the local codes and standards, and the field measured data of typical strata in Lanzhou, the standard value of pile end ultimate resistance of different soil types in Gansu province was proposed. The results show that the surface heave and radial lateral displacement of the soil around the pile decrease with the distance from the hole forming center. The radial influence range is 3D(D is pile diameter)pile center distance, and the vertical influence range is 25 m below the surface. The physical and mechanical indexes of the soil around the pile are significantly improved in the range of 2D pile center distance. The smaller the pile center distance is, the more obvious influence of soil compaction on the physical properties of the soil around the pile is. Under the same working conditions, the ultimate bearing capacity of single pile of bidirectional soil displacement screw pile is 25% higher than that of long spiral cast-in-place pile, and they all represent the characteristics of slow-moving strength failure.

参考文献/References:

[1] COCK F,IMBO R.Atlas Screw Pile:A Vibration-free,Full Displacement,Cast-in-place Pile[J].Transportation Research Record,1994(1447):49-62.
[2]FRANGOULIDES A C,CYPRUS.Model Testing of Continuous Helical Displacement Piles[J].Ground Engineering,2000,33(12):34-37.
[3]MANGUSHEV R A,KONYUSHKOV V V,D'YAKONOV I P.Analysis of Practical Application of Screw-in Cast Piles[J].Soil Mechanics and Foundation Engineering,2014,51(5):227-233.
[4]URBANSKI A,TRUTY A,RICHTER M.Stability of Drilling Rigs Moving on a Weak Subsoil.Theoretical Formulation and Selected Case Studies[J].Engineering Structures,2019,184:524-534.
[5]米海珍,杨 鹏.挤密桩处理湿陷性黄土地基的现场试验研究[J].岩土力学,2012,33(7):1951-1956,1964.
MI Hai-zhen,YANG Peng.A Field Experimental Study of Compaction Piles in Collapsible Loess Foundation[J].Rock and Soil Mechanics,2012,33(7):1951-1956,1964.
[6]米周林,高明哲,邓 萌.水泥土挤密桩在湿陷性黄土地区高层建筑中的应用[J].建筑结构,2017,47(19):82-85.
MI Zhou-lin,GAO Ming-zhe,DENG Meng.Application of Compacted Soil-cement Piles in Tall Building Construction in Collapsible Loess Regions[J].Building Structure,2017,47(19):82-85.
[7]李金奎,吴 凯.挤密桩处理高填方湿陷性黄土地基的现场试验分析[J].广西大学学报(自然科学版),2018,43(1):197-204.
LI Jin-kui,WU Kai.A Field Experimental Analysis of Compaction Piles in High Embankment Collapsible Loess Foundation[J].Journal of Guangxi University(Natural Science Edition),2018,43(1):197-204.
[8]朱彦鹏,杜晓启,杨校辉,等.挤密桩处理大厚度自重湿陷性黄土地区综合管廊地基及其工后浸水试验研究[J].岩土力学,2019,40(8):2914-2924.
ZHU Yan-peng,DU Xiao-qi,YANG Xiao-hui,et al.Research on Utility Tunnel Foundation Treated by Compaction Piles and Post-work Immersion Test in Self-weight Collapsible Loess Area with Large Thickness[J].Rock and Soil Mechanics,2019,40(8):2914-2924.
[9]朱彦鹏,李亚胜,李京榜,等.挤密桩法处理自重湿陷性黄土地基的试验[J].兰州理工大学学报,2019,45(6):133-137.
ZHU Yan-peng,LI Ya-sheng,LI Jing-bang,et al.Experiment on Treatment of Self-weight Wet-collapsible Loess Foundation with Compaction Pile Method[J].Journal of Lanzhou University of Technology,2019,45(6):133-137.
[10]吉 任,徐欢乐.水泥土挤密桩处理含盐湿陷性黄土地基施工技术研究[J].公路,2020,65(6):118-121.
JI Ren,XU Huan-le.Study on Construction Technology of Cement Soil Compaction Pile for Treatment of Saline Collapsible Loess Foundation[J].Highway,2020,65(6):118-121.
[11]刘明军,许东宇,张 伟,等.素土挤密桩消除湿陷性黄土湿陷性研究[J].建筑结构,2021,51(增2):1640-1644.
LIU Ming-jun,XU Dong-yu,ZHANG Wei,et al.Study on Eliminating Collapsibility of Collapsible Loess by Plain Soil Compacted Pile[J].Building Structure,2021,51(S2):1640-1644.
[12]李志毅,刘 钟,赵琰飞,等.螺旋挤土桩竖向承载性能试验研究[J].工业建筑,2009,39(增1):785-787.
LI Zhi-yi,LIU Zhong,ZHAO Yan-fei,et al.Model Test on Vertical Bearing Capacity of the Soil Displacement Screw Pile[J].Industrial Construction,2009,39(S1):785-787.
[13]李志毅,刘 钟,赵琰飞,等.新型螺旋挤土灌注桩现场试验研究[J].岩石力学与工程学报,2011,30(2):411-417.
LI Zhi-yi,LIU Zhong,ZHAO Yan-fei,et al.Field Test Study of New-type Soil Displacement Screw Pile[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(2):411-417.
[14]刘 钟,杨 松,卢璟春,等.螺旋挤土灌注桩与长螺旋灌注桩承载力足尺试验研究[J].岩土工程学报,2010,32(增2):127-131.
LIU Zhong,YANG Song,LU Jing-chun,et al.Full Scale Field Load Tests on Bearing Capacity of SDS Pile and CFA Pile[J].Chinese Journal of Geotechnical Engineering,2010,32(S2):127-131.
[15]刘 钟,卢璟春,张 义,等.砂土中螺旋挤土灌注桩受力性状模型试验研究[J].岩石力学与工程学报,2011,30(3):616-624.
LIU Zhong,LU Jing-chun,ZHANG Yi,et al.Model Test Study of Load Deformation Behavior of Soil Displacement Screw Pile in Sand[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(3):616-624.
[16]张豫川,刘辰麟,卢连长,等.灌注桩的成孔型式对桩侧摩阻力影响的研究[J].太原理工大学学报,2016,47(1):36-40.
ZHANG Yu-chuan,LIU Chen-lin,LU Lian-chang,et al.Research on Influence of the Pore Forming Type on Pile Side Friction Resistance[J].Journal of Taiyuan University of Technology,2016,47(1):36-40.
[17]长螺旋钻孔压灌桩技术标准:JGJ/T 419—2018[S].北京:中国建筑工业出版社,2018.
Technical Standard for Continuous Flight Auger Pile:JGJ/T 419—2018[S].Beijing:China Architecture & Building Press,2018.
[18]双向螺旋挤土灌注桩技术规程:DB62/T 3171—2019[S].北京:中国建材工业出版社,2019.
Technical Specification for Bidirectional Soil Displacement Screw Pile:DB62/T 3171—2019[S].Beijing:China Building Materials Press,2019.
[19]双向螺旋挤土灌注桩技术规程:J12652—2014[S].郑州:河南科学技术出版社,2014.
Technical Specification for Bidirectional Soil Displacement Screw Pile:J12652—2014[S].Zhengzhou:Henan Science and Technology Press,2014.
[20]湿陷性黄土地区建筑标准:GB 50025—2018[S].北京:中国建筑工业出版社,2018.
Standard for Building Construction in Collapsible Loess Regions:GB 50025—2018[S].Beijing:China Architecture & Building Press,2018.
[21]建筑地基基础设计规范:GB 50007—2011[S].北京:中国建筑工业出版社,2011.
Code for Design of Building Foundation:GB 50007—2011[S].Beijing:China Architecture & Building Press,2011.

相似文献/References:

[1]贺伟,韩晓雷,薛玉,等.高能级强夯在湿陷性黄土地区的应用[J].建筑科学与工程学报,2009,26(02):121.
 HE Wei,HAN Xiao-lei,XUE Yu,et al.Application of High Energy Level Dynamic Compaction in Collapsible Loess Region[J].Journal of Architecture and Civil Engineering,2009,26(05):121.

备注/Memo

备注/Memo:
收稿日期:2022-06-09
基金项目:国家自然科学基金项目(52068048); 甘肃省自然科学基金项目(21JR11RM052,1308RJZA140); 甘肃省住房和城乡建设厅建设科技项目(JK2022-04); 甘肃省高等学校青年博士基金项目(2022QB-045)
作者简介:马天忠(1979-),男,甘肃靖远人,副教授,工学博士,E-mail:matz0914@163.com。
通信作者:苏天涛(1989-),男,甘肃兰州人,工学博士研究生,E-mail:sutt5008@163.com。
更新日期/Last Update: 2022-09-30