|本期目录/Table of Contents|

[1]魏叶青,孔纲强,张继兵,等.串/并联运行下能源管廊相对热效率及热致应力现场试验[J].建筑科学与工程学报,2023,40(02):183-190.[doi:10.19815/j.jace.2021.09120]
 WEI Yeqing,KONG Gangqiang,ZHANG Jibing,et al.Field test on relative thermal efficiencies and thermal stresses of energy utility tunnel under series and parallel operation[J].Journal of Architecture and Civil Engineering,2023,40(02):183-190.[doi:10.19815/j.jace.2021.09120]
点击复制

串/并联运行下能源管廊相对热效率及热致应力现场试验(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年02期
页码:
183-190
栏目:
岩土工程
出版日期:
2023-03-30

文章信息/Info

Title:
Field test on relative thermal efficiencies and thermal stresses of energy utility tunnel under series and parallel operation
文章编号:
1673-2049(2023)02-0183-08
作者:
魏叶青1,孔纲强1,张继兵1,于 达1,杨 庆2
(1. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098; 2. 大连理工大学 海岸和近海工程国家重点实验室,辽宁 大连 116024)
Author(s):
WEI Yeqing1, KONG Gangqiang1, ZHANG Jibing1, YU Da1, YANG Qing2
(1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, Jiangsu, China; 2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China)
关键词:
地下综合管廊 能源管廊 相对热效率 热致应力 现场试验
Keywords:
utility tunnel energy tunnel relative thermal efficiency thermal stress field test
分类号:
TU443
DOI:
10.19815/j.jace.2021.09120
文献标志码:
A
摘要:
依托南京雨花台区软件谷杆线迁移地下综合管廊工程,在管廊的底板、侧板及顶板内埋设换热管形成能源管廊,并通过恒定输入功率加热循环液体,对明挖施工能源管廊的换热规律进行现场试验; 实测能源管廊的换热系统进/出口水温、底板温度及热致应力等变化规律,初步探讨并联和串联的能源管廊段连接形式下,系统运行过程中的相对热效率及热致应力响应性能,以及能源管廊段运行过程中对周围管廊段结构造成的影响。结果表明:试验条件下并联和串联运行下能源管廊的相对线热效率分别为39.68、31.27 kW?m-1,并联较串联运行模式提高了约26.9%,即并联运行的换热性能相对较好; 并联和串联运行过程中底板产生的最大轴向热致应力分别为1.30、1.24 MPa(两者相差小于10%),由于叠加效应,邻近管廊段产生0.33 MPa的最大压应力,对地下综合管廊结构安全性的影响较小; 相关结论可为依托城市地下综合管廊开展能源管廊或隧道的设计和计算提供参考。
Abstract:
Based on Nanjing software valley utility tunnel project, heat transfer pipes were buried in the bottom, side and top plates to form an energy tunnel, and the heat exchange law of cut-and-cover energy tunnel was studied by heating circulating fluid with constant power. The variation law of inlet/outlet water temperature, the temperature and thermal stress were measured. The relative thermal efficiencies and thermal stress under different connection forms as well as the impact on the surrounding sections during energy tunnel section operation were briefly discussed. The results show that the relative liner thermal efficiencies in parallel and series operation are 39.68 and 31.27 kW?m-1, respectively. The relative liner thermal efficiency in parallel operation is 26.9% higher than that in series, which means parallel operation has better heat transfer performance. The maximum thermal tensile stresses of bottom plate are 1.30 and 1.24 MPa, respectively, and the difference is less than 10%. Due to superposition effect, the maximum compressive stress of adjacent tunnel section is 0.33 MPa, which has little effect on the safety of utility tunnel structure. The relative results can provide a reference for the design and calculation of energy tunnels relying on urban utility tunnel.

参考文献/References:

[1] 中国建筑节能协会.中国建筑能耗研究报告(2019)[R].北京:中国建筑工业出版社,2020.
China association of building energy efficiency.China building energy consumption research report in 2019[R].Beijing:China Architecture & Building Press,2020.
[2]LALOUI L,ROTTA LORIA A F.Analysis and design of energy geostructures:theoretical essentials and practical application[M].Amsterdam:Elsevier,2019.
[3]FANG J C,KONG G Q,MENG Y D,et al.Thermomechanical behavior of energy piles and interactions within energy pile-raft foundations[J].Journal of Geotechnical and Geoenvironmental Engineering,2020,146(9):04020079.
[4]BARLA M,PERINO A.Energy from geo-structures:a topic of growing interest[J].Environmental Geotechnics,2015,2(1):3-7.
[5]ADAM D,MARKIEWICZ R.Energy from earth-coupled structures,foundations,tunnels and sewers[J].Geotechnique,2009,59(3):229-236.
[6]BUHMANN P,MOORMANN C,WESTRICH B,et al.Tunnel geothermics — a German experience with renewable energy concepts in tunnel projects[J].Geomechanics for Energy and the Environment,2016,8:1-7.
[7]ZHANG G Z,XIA C C,ZHAO X,et al.Effect of ventilation on the thermal performance of tunnel lining GHEs[J].Applied Thermal Engineering,2016,93:416-424.
[8]张国柱,夏才初,马绪光,等.寒区隧道地源热泵型供热系统岩土热响应试验[J].岩石力学与工程学报,2012,31(1):99-105.
ZHANG Guozhu,XIA Caichu,MA Xuguang,et al.Rock-soil thermal response test of tunnel heating system using heat pump in cold region[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(1):99-105.
[9]ZHANG G Z,XIA C C,SUN M,et al.A new model and analytical solution for the heat conduction of tunnel lining ground heat exchangers[J].Cold Regions Science and Technology,2013,88:59-66.
[10]FRODL S,FRANZIUS J N,BARTL T.Design and construction of the tunnel geothermal system in Jenbach[J].Geomechanics and Tunnelling,2010,3(5):658-668.
[11]祝振南,郭红仙.地热利用型盾构法隧道施工探索:以清华园隧道能源管片设计、制作及安装为例[J].隧道建设(中英文),2019,39(4):677-683.
ZHU Zhennan,GUO Hongxian.Exploration on construction of geothermal-utilized shield tunnels:a case study of fabrication and installation of tunnel energy segments in Qinghuayuan tunnel[J].Tunnel Construction,2019,39(4):677-683.
[12]FRANZIUS J N,PRALLE N.Turning segmental tunnels into sources of renewable energy[J].Proceedings of the Institution of Civil Engineers-civil Engineering,2011,164(1):35-40.
[13]BARLA M,DI DONNA A,INSANA A.A novel real-scale experimental prototype of energy tunnel[J].Tunnelling and Underground Space Technology,2019,87:1-14.
[14]地源热泵系统工程技术规范:GB 50366—2005[S].北京:中国建筑工业出版社,2009.
Technical code for ground-source heat pump system:GB 50366—2005[S].Beijing:China Architecture & Building Press,2009.
[15]ASHRAE.2011 ASHRAE handbook:heating,ventilating,and air-conditioning applications[M].Atlanta:ASHRAE,2011.
[16]IGSHPA.Closed-loop/geothermal heat pump system:design and installation standards[M].Stillwater:IGSHPA,2007.
[17]JAVED S,FAHLEN P.Thermal response testing of a multiple borehole ground heat exchanger[J].International Journal of Low-carbon Technologies,2011,6(2):141-148.
[18]LEE C,PARK S,WON J,et al.Evaluation of thermal performance of energy textile installed in tunnel[J].Renewable Energy,2012,42:11-22.
[19]INSANA A,BARLA M.Experimental and numerical investigations on the energy performance of a thermo-active tunnel[J].Renewable Energy,2020,152:781-792.
[20]郭红仙,孟嘉伟,祝振南.能源隧道热响应试验数值分析与适用性评价[J].防灾减灾工程学报,2019,39(4):572-578.
GUO Hongxian,MENG Jiawei,ZHU Zhennan.Numerical analysis and applicability evaluation of thermal response test in energy tunnels[J].Journal of Disaster Prevention and Mitigation Engineering,2019,39(4):572-578.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-09-13
基金项目:国家自然科学基金优秀青年科学基金项目(51922037)
作者简介:魏叶青(1997-),男,工学硕士研究生,E-mail:weiyeqing1997@163.com。
通信作者:孔纲强(1982-),男,工学博士,教授,博士生导师,E-mail:gqkong1@163.com。
更新日期/Last Update: 2023-03-20