|本期目录/Table of Contents|

[1]曹 军,王康宇,骆大江.循环荷载作用下土拱效应的离散元研究[J].建筑科学与工程学报,2023,40(03):152-160.[doi:10.19815/j.jace.2021.11032]
 CAO Jun,WANG Kangyu,LUO Dajiang.Discrete element analysis of soil arching effect under cyclic loading[J].Journal of Architecture and Civil Engineering,2023,40(03):152-160.[doi:10.19815/j.jace.2021.11032]
点击复制

循环荷载作用下土拱效应的离散元研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年03期
页码:
152-160
栏目:
岩土工程
出版日期:
2023-05-20

文章信息/Info

Title:
Discrete element analysis of soil arching effect under cyclic loading
文章编号:
1673-2049(2023)03-0152-09
作者:
曹 军1,王康宇1,骆大江2
(1. 浙江工业大学 土木工程学院,浙江 杭州 310014; 2. 杭州众邦基础工程有限公司,浙江 杭州 310000)
Author(s):
CAO Jun1, WANG Kangyu1, LUO Dajiang2
(1. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; 2. Hangzhou Zhongbang Foundation Engineering Co., Ltd, Hangzhou 310000, Zhejiang, China)
关键词:
土拱效应 离散元 循环荷载 Trapdoor试验 力链
Keywords:
soil arching effect discrete element cyclic loading Trapdoor test force chain
分类号:
TU411
DOI:
10.19815/j.jace.2021.11032
文献标志码:
A
摘要:
基于室内Trapdoor模型试验,采用PFC2D研究了循环荷载作用下不同路堤高度的土拱效应,从力链和位移的角度对路堤内土拱结构、填料移动的变化规律进行了宏观和微观分析。结果表明:抗扭转模型可以较好地模拟以铝棒相似土作为填料的Trapdoor试验; 在循环荷载作用下路堤内形成的土拱结构发生破坏,土拱效应得到削弱,土拱结构的破坏主要发生在初始加载阶段,并且在这个阶段高路堤底部土拱结构比低路堤受到外部荷载的影响要小; 随着加载的进行,路堤内部形成了新的稳定受力结构并基本保持不变; 在循环加载过程中低路堤加载板两侧的力链结构受到的影响和扰动比高路堤的大; 在循环荷载作用下,路堤表面发生了沉降,其中塑性位移主要发生在初始加载阶段,之后产生的几乎是弹性位移; 高路堤加载板两侧土体相较于低路堤在第一次加载时更不容易产生横向位移被挤向两端,加载板的竖向位移减少,从而减少加载板对底部土体的影响,使得路堤底部的土拱结构更不容易被影响。
Abstract:
Based on indoor Trapdoor model test, PFC2D was used to study the soil arching effect of different embankment heights under cyclic loading. The changes in soil arch structure and filler movement inside the embankment were analyzed from the perspectives of force chain and displacement, and macro and micro analyses were conducted. The results show that the anti torsion model can effectively simulate the Trapdoor test using aluminum rod like soil as filler. Under cyclic loading, the soil arch structure formed within the embankment is damaged, and the soil arching effect is weakened. The failure of the soil arch structure mainly occurs during the initial loading stage, and at this stage, the bottom soil arch structure of the high embankment is less affected by external loads than that of the low embankment. As the loading progresses, a new stable stress structure is formed inside the embankment and remains basically unchanged. During the cyclic loading process, the force chain structure on both sides of the low embankment loading plate is more affected and disturbed than that of the high embankment. Under cyclic loading, the surface of the embankment undergoes settlement, with plastic displacement mainly occurring during the initial loading stage and almost elastic displacement occurring thereafter. Compared to low embankments, the soil on both sides of the loading plate on high embankments is less prone to lateral displacement and being squeezed towards both ends during the first loading. The vertical displacement of the loading plate is reduced, thereby reducing the impact of the loading plate on the bottom soil and making the soil arch structure at the bottom of the embankment less susceptible to be impacted.

参考文献/References:

[1] 庄 妍,李劭邦,崔晓艳,等.高铁荷载下桩承式路基动力响应及土拱效应研究[J].岩土力学,2020,41(9):3119-3130.
ZHUANG Yan,LI Shaobang,CUI Xiaoyan,et al.Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading[J].Rock and Soil Mechanics,2020,41(9):3119-3130.
[2]KARL T.Theoretical soil mechanics[M].Hoboken:John Wiley & Sons,Inc.,1943.
[3]韩高孝,宫全美,周顺华.列车动荷载下桩网结构路基土拱效应试验研究[J].岩土力学,2014,35(6):1600-1606.
HAN Gaoxiao,GONG Quanmei,ZHOU Shunhua.Experimental study of soil arching effect in geogrid reinforced pile supported embankment under train dynamic load[J].Rock and Soil Mechanics,2014,35(6):1600-1606.
[4]AQOUB K,MOHAMED M,SHEEHAN T.Quantitative analysis of shallow unreinforced and reinforced piled embankments with different heights subject to cyclic loads:experimental study[J].Soil Dynamics and Earthquake Engineering,2020,138:106277.
[5]XU C,ZHANG X Y,HAN J,et al.Two-dimensional soil-arching behavior under static and cyclic loading[J].International Journal of Geomechanics,2019,19(8):04019091.
[6]徐 超,张兴亚,韩 杰,等.加载条件对土拱效应影响的Trapdoor模型试验研究[J].岩土工程学报,2019,41(4):726-732.
XU Chao,ZHANG Xingya,HAN Jie,et al.Trapdoor model tests on impact of loading conditions on soil arching effect[J].Chinese Journal of Geotechnical Engineering,2019,41(4):726-732.
[7]赖汉江,郑俊杰,崔明娟.循环荷载下低填方桩承式路堤动力响应分析[J].岩土力学,2015,36(11):3252-3258.
LAI Hanjiang,ZHENG Junjie,CUI Mingjuan.Dynamic response analysis of a low-filled piled embankment under cyclic loading[J].Rock and Soil Mechanics,2015,36(11):3252-3258.
[8]Itasca.Particle flow code in two dimensions,version 5.0[M].Tokyo:Itasca Consulting Group Inc.,2016.
[9]ROESSLER T,KATTERFELD A.Scaling of the angle of repose test and its influence on the calibration of DEM parameters using upscaled particles[J].Powder Technology,2018,330:58-66.
[10]JIANG M J.A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J].Computers and Geotechnics,2015,65:147-163.
[11]WANG K Y,CAO J,WANG X Q,et al.Soil arching of piled embankment in equal settlement pattern:a discrete element analysis[J].Symmetry,2021,13:1627.
[12]LAI H J.DEM analysis of “soil”-arching within geogrid-reinforced and unreinforced pile-supported embankments[J].Computers and Geotechnics,2014,61:13-23.
[13]周国庆,周 杰,陆 勇,等.颗粒流程序(PFC2D)中阻尼参数的适用性研究[J].中国矿业大学学报,2011,40(5):667-672.
ZHOU Guoqing,ZHOU Jie,LU Yong,et al.Selection of damping parameters used in a particle flow code(PFC2D)[J].Journal of China University of Mining & Technology,2011,40(5):667-672.
[14]辛海丽,孙其诚,刘建国,等.刚性块体压入颗粒体系时的受力及力链演变[J].岩土力学,2009,30(增1):88-92,98.
XIN Haili,SUN Qicheng,LIU Jianguo,et al.Evolution of force chains in a granular assembly based on indentation test[J].Rock and Soil Mechanics,2009,30(S1):88-92,98.
[15]付龙龙,周顺华,田志尧,等.双轴压缩条件下颗粒材料中力链的演化[J].岩土力学,2019,40(6):2427-2434.
FU Longlong,ZHOU Shunhua,TIAN Zhiyao,et al.Force chain evolution in granular materials during biaxial compression[J].Rock and Soil Mechanics,2019,40(6):2427-2434.
[16]孙其诚,辛海丽,刘建国,等.颗粒体系中的骨架及力链网络[J].岩土力学,2009,30(增1):83-87.
SUN Qicheng,XIN Haili,LIU Jianguo,et al.Skeleton and force chain network in static granular material[J].Rock and Soil Mechanics,2009,30(S1):83-87.
[17]LAI H J,ZHENG J J,CUI M J,et al.“Soil arching” for piled embankments:insights from stress redistribution behaviour of DEM modelling[J].Acta Geotechnica,2020,15(8):2117-2136.
[18]LAI H J,ZHENG J J,ZHANG R J,et al.Classification and characteristics of soil arching structures in pile-supported embankments[J].Computers and Geotechnics,2018,98:153-171.
[19]BHANDARI A,HAN J,PARSONS R L.Two-dimensional DEM analysis of behavior of geogrid-reinforced uniform granular bases under a vertical cyclic load[J].Acta Geotechnica,2015,10(4):469-480.

相似文献/References:

[1]陈仁朋,刘骐炜,姜正晖.桩承式路堤中的静动力土拱效应[J].建筑科学与工程学报,2017,34(05):31.
 CHEN Ren-peng,LIU Qi-wei,JIANG Zheng-hui.Static and Dynamic Soil Arching Effect of Pile-supported Embankments[J].Journal of Architecture and Civil Engineering,2017,34(03):31.
[2]芮 瑞,谷金林,郑筱彦,等.刚性基础下复合地基褥垫层加筋影响研究[J].建筑科学与工程学报,2022,39(01):106.[doi:10.19815/j.jace.2020.12036]
 RUI Rui,GU Jin-lin,ZHENG Xiao-yan,et al.Investigation of Influences of Geosynthetic Reinforcement on Composite Foundation Cushion Under Rigid Slab[J].Journal of Architecture and Civil Engineering,2022,39(03):106.[doi:10.19815/j.jace.2020.12036]

备注/Memo

备注/Memo:
收稿日期:2021-11-09
基金项目:国家自然科学基金项目(52109139); 浙江省自然科学基金项目(LQ20E080022)
作者简介:曹 军(1995-),男,工学硕士研究生,E-mail:2111906009@zjut.edu.cn。
通信作者:王康宇(1988-),男,工学博士,副教授,E-mail:kangyuwang@zjut.edu.cn。
更新日期/Last Update: 2023-05-20