|本期目录/Table of Contents|

[1]徐 港,文长城,王 青,等.超高性能混凝土保护层厚度取值分析[J].建筑科学与工程学报,2023,40(05):32-42.[doi:10.19815/j.jace.2022.01015]
 XU Gang,WEN Changcheng,WANG Qing,et al.Value analysis of UHPC cover thickness[J].Journal of Architecture and Civil Engineering,2023,40(05):32-42.[doi:10.19815/j.jace.2022.01015]
点击复制

超高性能混凝土保护层厚度取值分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年05期
页码:
32-42
栏目:
建筑材料
出版日期:
2023-09-15

文章信息/Info

Title:
Value analysis of UHPC cover thickness
文章编号:
1673-2049(2023)05-0032-11
作者:
徐 港1,2,文长城1,2,王 青1,2,鲍 浩1,2,汪胜巍1,2
(1. 三峡大学 防灾减灾湖北省重点实验室,湖北 宜昌 443002; 2. 三峡大学 土木工程系,湖北 宜昌 443002)
Author(s):
XU Gang1,2, WEN Changcheng1,2, WANG Qing1,2, BAO Hao1,2, WANG Shengwei1,2
(1. Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang 443002, Hubei, China; 2. Department of Civil Engineering, China Three Gorges University, Yichang 443002, Hubei, China)
关键词:
超高性能混凝土 保护层 黏结力 碳化 氯离子 冻融
Keywords:
UHPC concrete cover bond strength carbonization chloride ion freeze-thaw
分类号:
TU528
DOI:
10.19815/j.jace.2022.01015
文献标志码:
A
摘要:
从结构的安全性、适用性、耐久性、耐火性出发,分析了影响超高性能混凝土(UHPC)保护层厚度取值的主要因素,包括黏结强度、裂缝、挠度、碳化、冻融、氯离子侵蚀、硫酸盐侵蚀、耐火性。在安全性方面,基于变形钢筋黏结强度的理论计算方法,得到了UHPC构件的最小保护层厚度,并试验检验了计算结果。在适用性方面,考虑了钢纤维对混凝土构件挠度和裂缝的影响,经过验算得到了保护层厚度最低要求。在耐久性方面,分别考虑了碳化、冻融、氯离子侵蚀、硫酸盐侵蚀,借用已有公式计算出各类环境下的最小保护层厚度。在抵抗氯离子侵蚀方面,对不同环境进行了具体分析。此外,还对比分析了普通混凝土与UHPC的耐火性。最后,综合考虑安全性、适用性、耐久性、耐火性的要求,给出了UHPC保护层厚度取值的建议值。结果表明:当保护层不小于纵筋公称直径时,可保证UHPC构件的黏结强度,且最小保护层厚度可减小到普通混凝土的0.824倍以下; UHPC抵抗碳化和冻融作用的性能远优于普通混凝土,5 mm厚的保护层能够满足UHPC构件100年内使用需求; UHPC的导热能力高于普通混凝土,应该增加UHPC构件的构造措施来满足其防火要求。
Abstract:
From the perspective of safety, applicability, durability and fire resistance, the main factors affecting the value of thickness of ultra-high performance concrete(UHPC)cover was analyzed, including bond strength, crack, deflection, carbonization, freeze-thaw, chloride ion penetration, sulfate penetration and fire resistance. In terms of safety, the minimum cover thickness of UHPC components was calculated based on the theoretical calculation method of bond strength of deformed reinforcement, and the calculation results were verified by experiments. In terms of applicability, considering the influence of steel fiber on the deflections and cracks of concrete members, the minimum requirement of cover thickness can be obtained by checking calculation. In terms of durability, factors such as carbonation, freeze-thaw, chloride ion penetration and sulfate penetration were considered respectively, and the minimum cover thickness under various environments was calculated by using the existing formula. In terms of resistance to chloride ion penetration, different environments were analyzed in detail. In addition, the fire resistance of ordinary concrete and UHPC was compared and analyzed. Finally, considering the requirements of safety, applicability, durability and fire resistance, the recommended value of UHPC cover thickness was given. The results show that the bond strength of UHPC members can be guaranteed when the cover thickness is not less than the nominal diameter of longitudinal reinforcement, and the minimum cover thickness can be reduced to not more than 0.824 times of the ordinary concrete. The performance of UHPC in resisting carbonation and freeze-thaw is far better than that of ordinary concrete, and the cover of 5 mm thickness can meet the needs of UHPC members within 100 years. The thermal conductivity of UHPC is higher than that of ordinary concrete, and the structural measures of UHPC components should be added to meet its fire protection requirements.

参考文献/References:

[1] 陈宝春,韦建刚,苏家战,等.超高性能混凝土应用进展[J].建筑科学与工程学报,2019,36(2):10-20.
CHEN Baochun,WEI Jiangang,SU Jiazhan,et al.State-of-the-art progress on application of ultra-high performance concrete[J].Journal of Architecture and Civil Engineering,2019,36(2):10-20.
[2]MA F D,DENG M K,FAN H K,et al.Study on the lap-splice behavior of post-yield deformed steel bars in ultra high performance concrete[J].Construction and Building Materials,2020,262:120611.
[3]SOHAIL M G,KAHRAMAN R,AL NUAIMI N,et al.Durability characteristics of high and ultra-high performance concretes[J].Journal of Building Engineering,2021,33:101669.
[4]MOFFATT E G,THOMAS M D A,FAHIM A,et al.Performance of ultra-high-performance concrete in harsh marine environment for 21 years[J].ACI Materials Journal,2020,117(5):105-112.
[5]超高性能混凝土(UHPC)技术要求:T/CECS 10107—2020[S].北京:中国标准出版社,2020.
Technical requirements for ultra high performance concrete:T/CECS 10107—2020[S].Beijing:Standards Press of China,2020.
[6]KHAKSEFIDI S,GHALEHNOVI M,DE BRITO J.Bond behaviour of high-strength steel rebars in normal(NSC)and ultra-high performance concrete(UHPC)[J].Journal of Building Engineering,2021,33:101592.
[7]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
Code for design of concrete structures:GB 50010—2010[S].Beijing:China Architecture & Building Press,2011.
[8]王佳燕.混凝土结构钢筋保护层厚度偏差控制及检测[J].混凝土与水泥制品,2014(3):70-72.
WANG Jiayan.Thickness deviation controlling and detection of concrete structural reinforced cover[J].China Concrete and Cement Products,2014(3):70-72.
[9]朱 炯,陈素碧.基于耐久性的海工预应力混凝土结构保护层优化设计[J].混凝土,2016(9):132-135.
ZHU Jiong,CHEN Subi.Optimization design protection layer of pre-stressed concrete structures in marine environment based on durability[J].Concrete,2016(9):132-135.
[10]余 波,毋 铭,杨绿峰.混凝土保护层对钢筋腐蚀机理及腐蚀速率的影响[J].工业建筑,2014,44(7):112-119,169.
YU Bo,WU Ming,YANG Lüfeng.Influence of concrete cover on corrosion mechanism and corrosion rate of steel bars[J].Industrial Construction,2014,44(7):112-119,169.
[11]李克非,陈肇元.混凝土结构耐久性设计中钢筋保护层的规定与建议[J].东南大学学报(自然科学版),2006,36(增2):23-26.
LI Kefei,CHEN Zhaoyuan.Specification and recommendation of concrete cover in durability design[J].Journal of Southeast University(Natural Science Edition),2006,36(S2):23-26.
[12]LV L S,WANG J Y,XIAO R C,et al.Influence of steel fiber corrosion on tensile properties and cracking mechanism of ultra-high performance concrete in an electrochemical corrosion environment[J].Construction and Building Materials,2021,278:122338.
[13]张建荣,黄鼎业.混凝土保护层的设计及构造建议[J].同济大学学报(自然科学版),2000,28(6):641-645.
ZHANG Jianrong,HUANG Dingye.Some suggestions on design and construction technology for concrete protective cover[J].Journal of Tongji University(Natural Science),2000,28(6):641-645.
[14]ZHU Y P,ZHANG Y,HUSSEIN H H,et al.Numerical modeling for damaged reinforced concrete slab strengthened by ultra-high performance concrete(UHPC)layer[J].Engineering Structures,2020,209:110031.
[15]LARSEN I L,THORSTENSEN R T.The influence of steel fibres on compressive and tensile strength of ultra high performance concrete:a review[J].Construction and Building Materials,2020,256:119459.
[16]MICHAUD D,FAM A,DAGENAIS M A.Development length of sand-coated GFRP bars embedded in ultra-high performance concrete with very small cover[J].Construction and Building Materials,2021,270:121384.
[17]CITEK D,KOLISKO J,REHACEK S,et al.Concrete cover effect on bond behaviour of UHPC[J].Solid State Phenomena,2016,249:273-277.
[18]QIU M H,SHAO X D,ZHU Y P,et al.Experimental investigation on flexural cracking behavior of ultrahigh performance concrete beams[J].Structural Concrete,2020,21(5):2134-2153.
[19]LUO J,SHAO X D,FAN W,et al.Flexural cracking behavior and crack width predictions of composite(steel+UHPC)lightweight deck system[J].Engineering Structures,2019,194:120-137.
[20]PYO S,ALKAYSI M,EL-TAWIL S.Crack propagation speed in ultra high performance concrete(UHPC)[J].Construction and Building Materials,2016,114:109-118.
[21]EL-JOUKHADAR N,PANTAZOPOULOU S J.Effectiveness of UHPFRC cover in delaying bar corrosion[J].Construction and Building Materials,2021,269:121288.
[22]AHMAD S,RASUL M,ADEKUNLE S K,et al.Mechanical properties of steel fiber-reinforced UHPC mixtures exposed to elevated temperature:effects of exposure duration and fiber content[J].Composites Part B:Engineering,2019,168:291-301.
[23]LI H Y,HAO X H,QIAO Q,et al.Thermal properties of hybrid fiber-reinforced reactive powder concrete at high temperature[J].Journal of Materials in Civil Engineering,2020,32(3):04020022.
[24]王进伟.不锈钢筋与混凝土粘结性能试验研究[D].郑州:郑州大学,2018.
WANG Jinwei.Experimental study on bond properties of stainless steel and concrete[D].Zhengzhou:Zhengzhou University,2018.
[25]王瑞龙,马 骉.钢筋与超高性能混凝土粘结锚固试验研究[J].城市道桥与防洪,2018(9):204-207,22.
WANG Ruilong,MA Biao.Study on bond anchorage test of steel bar and ultra-high performance concrete[J].Urban Roads Bridges & Flood Control,2018(9):204-207,22.
[26]郑山锁,裴 培,张艺欣,等.钢筋混凝土粘结滑移研究综述[J].材料导报,2018,32(23):4182-4191.
ZHENG Shansuo,PEI Pei,ZHANG Yixin,et al.Review of research on bond-slip of reinforced concrete[J].Materials Review,2018,32(23):4182-4191.
[27]孙 杨,乔国富.锈蚀钢筋与混凝土粘结性能研究综述[J].材料导报,2020,34(3):122-131.
SUN Yang,QIAO Guofu.Research on the bond properties between corroded reinforcing steel bar and concrete:a review[J].Materials Reports,2020,34(3):122-131.
[28]徐有邻.变形钢筋-混凝土黏结锚固性能的试验研究[D].北京:清华大学,1990.
XU Youlin.Experimental study on bond and anchorage performance of deformed steel bar-concrete[D].Beijing:Tsinghua University,1990.
[29]TEPFERS R,COSENZA E,MODNIKS J,et al.Bond of reinforcement in concrete[R].Lausanne:FIB,2000.
[30]XU G,WEI J,TAN T,et al.Modelling bond strength of corroded plain bar reinforcement in concrete[J].Structural Concrete,2007,8(3):133-138.
[31]邱明红,邵旭东,胡伟业,等.钢筋UHPC受弯构件裂缝宽度计算方法研究[J].土木工程学报,2020,53(10):89-98,119.
QIU Minghong,SHAO Xudong,HU Weiye,et al.Calculation method for crack width of reinforced UHPC flexural components[J].China Civil Engineering Journal,2020,53(10):89-98,119.
[32]邓宗才,肖 锐,徐海宾,等.高强钢筋超高性能混凝土梁的使用性能研究[J].哈尔滨工程大学学报,2015,36(10):1335-1340.
DENG Zongcai,XIAO Rui,XU Haibin,et al.Serviceability research of ultra-high performance concrete beams reinforced with high strength steel bars[J].Journal of Harbin Engineering University,2015,36(10):1335-1340.
[33]聂 洁,李传习,钱国平,等.钢纤维形状与掺量对UHPC施工及力学特性的影响[J].材料导报,2021,35(4):4042-4052.
NIE Jie,LI Chuanxi,QIAN Guoping,et al.Effect of shape and content of steel fiber on workability and mechanical properties of ultra-high performance concrete[J].Materials Reports,2021,35(4):4042-4052.
[34]管俊峰,刘霖艾,白卫峰,等.600 MPa高强钢筋高强混凝土梁刚度试验研究[J].应用基础与工程科学学报,2020,28(5):1197-1211.
GUAN Junfeng,LIU Linai,BAI Weifeng,et al.Research on rigidity of high-strength concrete beams with 600 MPa steel bars[J].Journal of Basic Science and Engineering,2020,28(5):1197-1211.
[35]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380,403.
JIN Weiliang,ZHAO Yuxi.State-of-the-art on durability of concrete structures[J].Journal of Zhejiang University(Engineering Science),2002,36(4):371-380,403.
[36]保护层厚度专题研究组.钢筋混凝土保护层厚度取值的建议[J].建筑结构学报,1982,3(5):11-20.
Research Group on Concrete Protective Coaring Thickness.A suggestion on the minimum concrete protective coating thickness[J].Journal of Building Structure,1982,3(5):11-20.
[37]既有混凝土结构耐久性评定标准:GB/T 51355—2019[S].北京:中国建筑工业出版社,2019.
Standard for durability assessment of existing concrete structures:GB/T 51355—2019[S].Beijing:China Architecture & Building Press,2019.
[38]屈文俊,车惠民.既有混凝土桥梁的碳化分析及耐久性预测[J].铁道学报,1996,18(3):80-85.
QU Wenjun,CHE Huimin.Analysis of concrete carbonization and durability prediction for exsiting concrete bridges[J].Journal of the China Railway Society,1996,18(3):80-85.
[39]蒲心诚.超高强高性能混凝土:原理·配制·结构·性能·应用[M].重庆:重庆大学出版社,2004.
PU Xincheng.Super high strength high performance concrete:principle·preparation·structure·performance·application[M].Chongqing:Chongqing University Press,2004.
[40]普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009[S].北京:中国建筑工业出版社,2009.
Standard for test methods of long-term performance and durability of ordinary concrete:GB/T 50082—2009[S].Beijing:China Architecture & Building Press,2009.
[41]王立久,汪振双,崔正龙.基于冻融损伤抛物线模型的再生混凝土寿命预测[J].应用基础与工程科学学报,2011,19(1):29-35.
WANG Lijiu,WANG Zhenshuang,CUI Zhenglong.Service life prediction of recycled concrete based on freezing-thawing damage parabola model[J].Journal of Basic Science and Engineering,2011,19(1):29-35.
[42]王 月.氯盐冻融循环与侵蚀作用下活性粉末混凝土的耐久性研究[D].北京:北京交通大学,2016.
WANG Yue.Durability of reactive powder concrete under the action of chloride salt freeze-thaw cycling and erosion[D].Beijing:Beijing Jiaotong University,2016.
[43]民用建筑可靠性鉴定标准:GB 50292—2015[S].北京:中国建筑工业出版社,2016.
Standard for appraisal of reliability of civil buildings:GB 50292—2015[S].Beijing:China Architecture & Building Press,2016.
[44]张成琳,刘清风.钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J].材料导报,2022,36(1):69-77.
ZHANG Chenglin,LIU Qingfeng.Coupling erosion of chlorides and sulfates in reinforced concrete:a review[J].Materials Reports,2022,36(1):69-77.
[45]GENG Y J,JIN Z Q,HOU B R,et al.Long-term behavior of fiber reinforced concrete exposed to sulfate solution cycling in drying-immersion[J].Journal of Wuhan University of Technology(Materials Science Edition),2017,32(4):875-881.
[46]CONDOR J,ASGHARI K,UNATRAKARN D.Experimental results of diffusion coefficient of sulfate ions in cement type 10 and class G[J].Energy Procedia,2011,4:5267-5274.
[47]LI T,WANG S S.Modeling diffusion coefficient of sulfate ion in concrete using probabilistic approach[J].Construction and Building Materials,2019,215:435-446.
[48]CHEN Y,LIU P,ZHANG R L,et al.Chemical kinetic analysis of the activation energy of diffusion coefficient of sulfate ion in concrete[J].Chemical Physics Letters,2020,753:137596.
[49]MONTEIRO P J M,KURTIS K E.Time to failure for concrete exposed to severe sulfate attack[J].Cement and Concrete Research,2003,33(7):987-993.
[50]ALI F.Is high strength concrete more susceptible to explosive spalling than normal strength concrete in fire?[J].Fire and Materials,2002,26(3):127-130.
[51]SO H S,YI J B,KHULGADAI J,et al.Properties of strength and pore structure of reactive powder concrete exposed to high temperatures[J].ACI Materials Journal,2014,111(3):335-346.
[52]BILOW D N,KAMARA M E.Fire and concrete structures[C]//ANDERSON D,VENTURA C,HARVEY D,et al.Proceedings of the 2008 Structures Congress.Vancouver:ASCE,2008:1-10.
[53]建筑设计防火规范:GB 50016—2014[S].北京:中国计划出版社,2014.
Code for fire protection design of buildings:GB 50016—2014[S].Beijing:China Planning Press,2014.
[54]郝先慧.活性粉末混凝土高温热工参数与温度场研究[D].石家庄:石家庄铁道大学,2018.
HAO Xianhui.Study on high temperature thermal parameters and temperature field of reactive powder concrete[D].Shijiazhuang:Shijiazhuang Tiedao University,2018.
[55]KODUR V,BANERJI S,SOLHMIRZAEI R.Effect of temperature on thermal properties of ultrahigh-performance concrete[J].Journal of Materials in Civil Engineering,2020,32(8):04020210.
[56]郑文忠,王 睿,王 英.活性粉末混凝土热工参数试验研究[J].建筑结构学报,2014,35(9):107-114.
ZHENG Wenzhong,WANG Rui,WANG Ying.Experimental study on thermal parameter of reactive powder concrete[J].Journal of Building Structures,2014,35(9):107-114.
[57]NOUMOWE A,SIDDIQUE R,RANC G.Thermo-mechanical characteristics of concrete at elevated temperatures up to 310 ℃[J].Nuclear Engineering and Design,2009,239(3):470-476.
[58]National addition to eurocode 2-design of concrete structures:specific rules for ultra-high performance fibre-reinforced concrete(UHPFRC):NF P 18-710[S].Paris:AFNOR,2016.
[59]Concrete-ultra-high performance fibre-reinforced concrete-specifications,performance,production and conformity:NF P 18-470[S].Paris:AFNOR,2016.

相似文献/References:

[1]陈宝春,季韬,黄卿维,等.超高性能混凝土研究综述[J].建筑科学与工程学报,2014,31(03):1.
 CHEN Bao-chun,JI Tao,HUANG Qing-wei,et al.Review of Research on Ultrahigh Performance Concrete[J].Journal of Architecture and Civil Engineering,2014,31(05):1.
[2]邵旭东,曹君辉.面向未来的高性能桥梁结构研发与应用[J].建筑科学与工程学报,2017,34(05):41.
 SHAO Xu-dong,CAO Jun-hui.Research and Application of High Performance Bridge Structures Toward Future[J].Journal of Architecture and Civil Engineering,2017,34(05):41.
[3]方 志,郑 辉,杨 剑,等.超高性能混凝土结构的设计方法[J].建筑科学与工程学报,2017,34(05):59.
 FANG Zhi,ZHENG Hui,YANG Jian,et al.Design Principles for Ultra-high Performance Concrete Structures[J].Journal of Architecture and Civil Engineering,2017,34(05):59.
[4]李立峰,范 昕,石雄伟,等.预应力UHPC梁弯曲性能分析与合理设计[J].建筑科学与工程学报,2018,35(02):38.
 LI Li-feng,FAN Xin,SHI Xiong-wei,et al.Analysis of Flexural Performance and Rational Design of Prestressed UHPC Beam[J].Journal of Architecture and Civil Engineering,2018,35(05):38.
[5]陈宝春,韦建刚,苏家战,等.超高性能混凝土应用进展[J].建筑科学与工程学报,2019,36(02):10.
 CHEN Bao-chun,WEI Jian-gang,SU Jia-zhan,et al.State-of-the-art Progress on Application of Ultra-high Performance Concrete[J].Journal of Architecture and Civil Engineering,2019,36(05):10.
[6]黄福云,陈汉伦,杨芳芳,等.超高性能混凝土板受弯承载能力及计算方法试验研究[J].建筑科学与工程学报,2019,36(03):28.
 HUANG Fu-yun,CHEN Han-lun,YANG Fang-fang,et al.Experimental Study on Bending Capacity and Calculation Method of Ultra-high Performance Concrete Slab[J].Journal of Architecture and Civil Engineering,2019,36(05):28.
[7]梁 林,王秋维,史庆轩,等.常温养护超高性能混凝土弯拉性能及轴拉本构模型[J].建筑科学与工程学报,2024,41(03):43.[doi:10.19815/j.jace.2022.05034]
 LIANG Lin,WANG Qiuwei,SHI Qingxuan,et al.Bending-tension performance and axial tension constitutive model of ultra-high performance concrete under normal temperature curing[J].Journal of Architecture and Civil Engineering,2024,41(05):43.[doi:10.19815/j.jace.2022.05034]
[8]陈宝春,陈逸聪,周家亮,等.预应力UHPC槽形节段与整体式混凝土板组合梁受剪性能[J].建筑科学与工程学报,2024,41(03):54.[doi:10.19815/j.jace.2024.04031]
 CHEN Baochun,CHEN Yicong,ZHOU Jialiang,et al.Shear behavior of composite girder with prestressed UHPC channel segments and monolithic concrete slab[J].Journal of Architecture and Civil Engineering,2024,41(05):54.[doi:10.19815/j.jace.2024.04031]

备注/Memo

备注/Memo:
收稿日期:2022-01-05
基金项目:国家级地方高校能源和环境材料化学学科创新引智基地项目(D20015); 土木工程防灾减灾湖北省引智创新示范基地项目(2021EJD026)
作者简介:徐 港(1974-),男,工学博士,教授,博士生导师,E-mail:postxg@163.com。
更新日期/Last Update: 2023-09-01