|本期目录/Table of Contents|

[1]周金枝,吴 学,钟楚珩,等.玄武岩纤维再生混凝土循环加载变形与疲劳寿命预测[J].建筑科学与工程学报,2023,40(06):1-9.[doi:10.19815/j.jace.2022.05088]
 ZHOU Jinzhi,WU Xue,ZHONG Chuheng,et al.Cyclic loading deformation and fatigue life prediction of basalt fiber recycled aggregate concrete[J].Journal of Architecture and Civil Engineering,2023,40(06):1-9.[doi:10.19815/j.jace.2022.05088]
点击复制

玄武岩纤维再生混凝土循环加载变形与疲劳寿命预测(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年06期
页码:
1-9
栏目:
建筑材料
出版日期:
2023-11-30

文章信息/Info

Title:
Cyclic loading deformation and fatigue life prediction of basalt fiber recycled aggregate concrete
文章编号:
1673-2049(2023)06-0001-09
作者:
周金枝1,2,吴 学1,3,钟楚珩1,田 鹏1,余智玲1
(1. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068; 2. 桥梁结构健康与安全国家重点实验室,湖北 武汉 430034; 3. 中建三局集团(深圳)有限公司,广东 深圳 518000)
Author(s):
ZHOU Jinzhi1,2, WU Xue1,3, ZHONG Chuheng1, TIAN Peng1, YU Zhiling1
(1. College of Civil Architecture and Environment, Hubei University of Technology, Wuhan 430068, Hubei, China; 2. State Key Laboratory of Bridge Structure Health and Safety, Wuhan 430034, Hubei, China; 3. China Construction Third Engineering Bureau Group(Shenzhen)Co., Ltd, Shenzhen 518000, Guangdong, China)
关键词:
玄武岩纤维再生混凝土 疲劳损伤 刚度退化 响应面法 疲劳寿命预测
Keywords:
basalt fiber recycled aggregate concrete fatigue damage rigidity degeneration response surface methodology fatigue life prediction
分类号:
TU528
DOI:
10.19815/j.jace.2022.05088
文献标志码:
A
摘要:
为改善再生混凝土(RAC)的疲劳性能,掺入玄武岩纤维制成玄武岩纤维增强再生混凝土(BFRAC),对不同纤维体积率的BFRAC弯曲疲劳性能进行研究,分析了BFRAC的疲劳变形规律,并采用响应面法(RSM)研究了纤维体积率和应力水平对其疲劳寿命的影响。结果表明:BFRAC的疲劳应变和疲劳模量都呈三阶段发展; 随着应力水平和循环比的增大,疲劳应变逐渐增大,疲劳模量逐渐减小; 随着纤维体积率的增大,疲劳应变和疲劳模量发展减缓,其中纤维体积率为0.3%时效果最佳; 在相同应力水平下RAC疲劳寿命低于天然混凝土(NAC),玄武岩纤维的掺入可显著提高RAC疲劳寿命,随着纤维体积率的增大,BFRAC疲劳寿命呈现先增大后减小的趋势; 通过RSM建立的BFRAC疲劳寿命预测模型经检验证明具有良好精度; 纤维体积率和应力水平的交互作用对BFRAC疲劳寿命有一定影响,但应力水平的大小对BFRAC疲劳寿命的影响更为显著; 采用渴求函数对BFRAC进行多目标优化得出在0.6、0.7、0.8应力水平下的最优纤维掺量分别为0.321%、0.317%、0.313%。
Abstract:
In order to improve the fatigue performance of recycled aggregate concrete(RAC), basalt fiber was incorporated to make basalt fiber reinforced recycled aggregate concrete(BFRAC). The bending fatigue performance of BFRAC with different fiber volume fractions was investigated, then the fatigue deformation law of BFRAC was analyzed, and the effect of fiber volume fraction and stress level on its fatigue life was studied by response surface methodology(RSM). The results show that the fatigue strain and fatigue modulus of BFRAC develop in three stages. With the increase of stress level and cycle ratio, the fatigue strain gradually increases and the fatigue modulus gradually decreases. With the increase of fiber volume fraction, the development of fatigue strain and fatigue modulus slows down, and the effect is the best when the fiber volume fraction is 0.3%. The fatigue life of RAC is lower than that of normal aggregate concrete(NAC)at the same stress level, and the incorporation of basalt fibers can significantly improve the fatigue life of RAC, with the increase of fiber volume fraction, BFRAC fatigue life shows a trend of increasing first and then decreasing. The fatigue life prediction model of BFRAC established by RSM is tested and proved to have good accuracy. The interaction of fiber volume fraction and stress level has some effect on BFRAC fatigue life, but the magnitude of stress level has more significant effect on BFRAC fatigue life. The multi-objective optimization of BFRAC using the desirability function shows that optimal fiber volume fraction is 0.321%, 0.317%, and 0.313% at 0.6, 0.7, and 0.8 stress levels, respectively.

参考文献/References:

[1] 丁发兴,方常靖,龚永智,等.再生混凝土单轴力学性能指标统一计算方法[J].建筑科学与工程学报,2014,31(4):16-22.
DING Faxing,FANG Changjing,GONG Yongzhi,et al.Unified calculation method of uniaxial mechanical performance index of recycled concrete[J].Journal of Architecture and Civil Engineering,2014,31(4):16-22.
[2]XIAO J Z,LI J B,ZHANG C.On relationships between the mechanical properties of recycled aggregate concrete:an overview[J].Materials and Structures,2006,39(6):655-664.
[3]耿 欧,孙 倩,李大贺.氯盐对再生混凝土硫酸盐侵蚀的抑制作用研究[J].建筑科学与工程学报,2020,37(6):108-116.
GENG Ou,SUN Qian,LI Dahe.Study on inhibitory effect of chlorine salt on sulfate corrosion of recycled concrete[J].Journal of Architecture and Civil Engineering,2020,37(6):108-116.
[4]THOMAS C,SETIEN J,POLANCO J A,et al.Durability of recycled aggregate concrete[J].Construction and Building Materials,2013,40:1054-1065.
[5]THOMAS C,SETIEN J,POLANCO J A,et al.Fatigue limit of recycled aggregate concrete[J].Construction and Building Materials,2014,52:146-154.
[6]肖建清,丁德馨,骆行文,等.再生混凝土疲劳损伤演化的定量描述[J].中南大学学报(自然科学版),2011,42(1):170-176.
XIAO Jianqing,DING Dexin,LUO Xingwen,et al.Quantitative analysis of damage evolution as recycled concrete approaches fatigue failure[J].Journal of Central South University(Science and Technology),2011,42(1):170-176.
[7]LIU H X,YANG J W,KONG X Q,et al.Basic mechanical properties of basalt fiber reinforced recycled aggregate concrete[J].The Open Civil Engineering Journal,2017,11(1):43-53.
[8]刘 逸,刘元珍,刘运房,等.玄武岩纤维对再生混凝土轴心受拉性能的影响[J].科学技术与工程,2021,21(12):5060-5065.
LIU Yi,LIU Yuanzhen,LIU Yunfang,et al.Effect of basalt fiber on uniaxial tensile properties of recycled aggregate concrete[J].Science Technology and Engineering,2021,21(12):5060-5065.
[9]魏 康,李 犇,孙 峤.玄武岩纤维改善再生混凝土抗氯离子渗透性能研究[J].硅酸盐通报,2022,41(5):1656-1662.
WEI Kang,LI Ben,SUN Qiao.Improving chloride ion penetration resistance of recycled concrete by basalt fiber[J].Bulletin of the Chinese Ceramic Society,2022,41(5):1656-1662.
[10]解国梁,申向东,刘金云,等.玄武岩纤维再生混凝土抗冻性能及损伤劣化模型[J].复合材料科学与工程,2021(4):55-60.
XIE Guoliang,SHEN Xiangdong,LIU Jinyun,et al.Frost resistance and damage degradation model of basalt fiber regenerated concrete[J].Composites Science and Engineering,2021(4):55-60.
[11]DONG J F,WANG Q Y,GUAN Z W.Material properties of basalt fibre reinforced concrete made with recycled earthquake waste[J].Construction and Building Materials,2017,130:241-251.
[12]高 银,宗 翔.玄武岩纤维对再生混凝土基本力学性能的影响[J].长江大学学报(自科版),2018,15(21):6-10,4.
GAO Yin,ZONG Xiang.The effect of basalt fiber on the basical mechanical properties of recycled aggregate concrete[J].Journal of Yangtze University(Natural Science Edition),2018,15(21):6-10,4.
[13]WANG Y G,LI S P,HUGHES P,et al.Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures[J].Construction and Building Materials,2020,247:118561.
[14]普通混凝土力学性能试验方法标准:GB/T 50081—2002[S].北京:中国建筑工业出版社,2003.
Standard for test method of mechanical properties on ordinary concrete:GB/T 50081—2002[S].Beijing:China Architecture & Building Press,2003.
[15]LEE M K,BARR B I G.An overview of the fatigue behaviour of plain and fibre reinforced concrete[J].Cement and Concrete Composites,2004,26(4):299-305.
[16]CACHIM P B,FIGUEIRAS J A,PEREIRA P A A.Fatigue behavior of fiber-reinforced concrete in compression[J].Cement and Concrete Composites,2002,24(2):211-217.
[17]薛彦卿,丁 锋,陈峰林,等.路用水泥混凝土疲劳损伤的可靠度分析[J].建筑材料学报,2014,17(6):1009-1014.
XUE Yanqing,DING Feng,CHEN Fenglin,et al.Fatigue damage reliability analysis of cement concrete for highway pavement[J].Journal of Building Materials,2014,17(6):1009-1014.
[18]BROUTMAN L J,SAHU S.A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics[M]//CORTEN H.Composite Materials:Testing and Design.West Conshohocken:ASTM International,1972:170.
[19]朱志远,岑国平,董宗戈,等.基于RSM的混凝土抗冻性研究[J].混凝土,2010(5):13-15.
ZHU Zhiyuan,CEN Guoping,DONG Zongge,et al.Study on freeze-thaw resistance of concrete based on RSM[J].Concrete,2010(5):13-15.
[20]LI Q X,CAI L C,FU Y W,et al.Fracture properties and response surface methodology model of alkali-slag concrete under freeze-thaw cycles[J].Construction and Building Materials,2015,93:620-626.
[21]ALGIN Z,OZEN M.The properties of chopped basalt fibre reinforced self-compacting concrete[J].Construction and Building Materials,2018,186:678-685.

相似文献/References:

[1]金伟良,刘振东,张 军.基于修正力磁模型的混凝土结构压磁疲劳模拟[J].建筑科学与工程学报,2024,41(04):1.[doi:10.19815/j.jace.2023.03071]
 JIN Weiliang,LIU Zhendong,ZHANG Jun.Piezomagnetic fatigue simulation of concrete structures based on modified magneto-mechanical model[J].Journal of Architecture and Civil Engineering,2024,41(06):1.[doi:10.19815/j.jace.2023.03071]

备注/Memo

备注/Memo:
收稿日期:2022-11-29
基金项目:桥梁结构健康与安全国家重点实验室开放课题(BHSKL19-04-KF); 湖北省教研项目(2017314)
作者简介:周金枝(1965-),女,工学博士,教授,博士生导师,E-mail:hgzhougzhou@126.com。
通信作者:钟楚珩(1989-),男,工学博士,讲师,E-mail:chuheng.zhong@hbut.edu.cn。
更新日期/Last Update: 2023-12-01