|本期目录/Table of Contents|

[1]滕晓丹,蒙春贵,莫剑锋,等.自应力对圆钢管混凝土短柱轴压性能的影响机理及其预测模型[J].建筑科学与工程学报,2023,40(06):58-71.[doi:10.19815/j.jace.2022.01049]
 TENG Xiaodan,MENG Chungui,MO Jianfeng,et al.Influence mechanism and prediction model of self-stress on axial compression performance of concrete-filled steel tube short column[J].Journal of Architecture and Civil Engineering,2023,40(06):58-71.[doi:10.19815/j.jace.2022.01049]
点击复制

自应力对圆钢管混凝土短柱轴压性能的影响机理及其预测模型(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年06期
页码:
58-71
栏目:
建筑结构
出版日期:
2023-11-30

文章信息/Info

Title:
Influence mechanism and prediction model of self-stress on axial compression performance of concrete-filled steel tube short column
文章编号:
1673-2049(2023)06-0058-14
作者:
滕晓丹1,2,3,4,蒙春贵1,莫剑锋1,孙辉煌1,彭林欣1,2,3
(1. 广西大学 土木建筑工程学院,广西 南宁 530004; 2. 广西大学 广西防灾减灾与工程安全重点实验室,广西 南宁 530004; 3. 广西大学 工程防灾与结构安全教育部重点实验室,广西 南宁 530004; 4. 广西新发展交通集团有限公司,广西 南宁 530028)
Author(s):
TENG Xiaodan1,2,3,4, MENG Chungui1, MO Jianfeng1, SUN Huihuang1, PENG Linxin1,2,3
(1. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China; 2. Guangxi Key Laboratory of Engineering Disaster Prevention and Structural Safety, Guangxi University, Nanning 530004, Guangxi, China; 3. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China; 4. Guangxi Xinfazhan Communication Group Co., Ltd, Nanning 530028, Guangxi, China)
关键词:
钢管混凝土 膨胀剂 自应力 短柱 轴压性能
Keywords:
concrete-filled steel tube expansive agent self-stress short column axial compression performance
分类号:
TU398.9
DOI:
10.19815/j.jace.2022.01049
文献标志码:
A
摘要:
为研究自应力对圆钢管混凝土短柱轴压性能的影响机理,采用不同掺量的膨胀剂制备自应力混凝土,开展了12根圆钢管自应力混凝土短柱的轴心受压试验,分析了自应力对试件的破坏形态、荷载-位移曲线、极限承载力、破坏位移、荷载-应变曲线的影响。利用有限元软件ABAQUS建立钢管自应力混凝土轴心受压短柱有限元模型,模拟结果与试验结果吻合良好。进一步分析了自应力对试件极限承载力、钢管与混凝土的荷载分配、接触应力等方面的影响,并通过钢管与混凝土接触应力、混凝土纵向应力的变化阐明自应力对短柱轴压性能的影响机理。最后,基于统计分析的方法,对影响自应力的因素进行偏相关分析,提出自应力预测模型。结果表明:自应力不影响试件的破坏形态; 试验中自应力对极限承载力的影响存在一个最佳水平,12%膨胀剂掺量组别的试件平均极限承载力最高; 试件到达极限承载力对应的破坏位移随着自应力的增大而减小; 自应力对荷载-位移、荷载-应变的变化趋势影响也不显著; 提高混凝土强度、钢管强度、钢管壁厚均可提高试件的极限承载力。
Abstract:
In order to study the influence mechanism of self-stress on the axial compression performance of concrete-filled steel tube(CFST)short column, self-stressing concrete was prepared by using different dosages of expansion agents, and axial compression test of 12 self-stressing CFST short columns were carried out, the influences of self-stress on the failure mode, load-displacement curve, ultimate bearing capacity, failure displacement and load-strain curve of the specimens were analyzed. The self-stressing CFST axial compression short column finite element model(FEM)was established by using the finite element software ABAQUS, and the simulation results agree well with experiment results. The influences of self-stress on ultimate bearing capacity, load distribution between steel tube and concrete, contact stress and so on were further analyzed. The influence mechanism of self-stress on the axial compression performance of short columns was illustrated by the change of contact stress between steel tube and concrete, and longitudinal stress of concrete. Finally, based on the method of statistical analysis, the partial correlation analysis of the factors affecting the self-stress was carried out, and a self-stress prediction model was proposed. The results show that self-stress does not affect the failure form of the specimens, and the influence of self-stress on ultimate bearing capacity has an optimal level in the test, the average ultimate bearing capacity of the 12% expansion agent content group is the highest. The failure displacement corresponding to the specimens reaching the ultimate bearing capacity decreases with the increase of self-stress. The effect of self-stress on load-displacement and load-strain is not significant. Improving the concrete strength, steel tube strength and wall thickness can improve the ultimate bearing capacity of specimens.

参考文献/References:

[1] 李 娜,卢亦焱,李 杉,等.圆钢管自应力自密实混凝土短柱轴心受压性能研究[J].建筑结构学报,2019,40(11):162-171.
LI Na,LU Yiyan,LI Shan,et al.Experimental study on self-stressing and self-compacting concrete-filled circular steel tube short columns subjected to axial compression[J].Journal of Building Structures,2019,40(11):162-171.
[2]李永进,王志滨,李东升.长期荷载作用下带脱空缺陷钢管混凝土柱的受力性能研究[J].建筑结构学报,2020,41(10):112-120.
LI Yongjin,WANG Zhibin,LI Dongsheng.Mechanical behavior of concrete-filled steel tubular columns with initial concrete imperfection under long-term sustained load[J].Journal of Building Structures,2020,41(10):112-120.
[3]徐礼华,徐方舟,周鹏华,等.钢管自应力自密实高强混凝土中长柱受压性能试验研究[J].土木工程学报,2016,49(11):26-34,44.
XU Lihua,XU Fangzhou,ZHOU Penghua,et al.Experimental research on axial compression performance of medium-and-long steel tubular columns filled with high-strength self-stressing self-compacting concrete[J].China Civil Engineering Journal,2016,49(11):26-34,44.
[4]WEI Y,JIANG C,WU Y F.Confinement effectiveness of circular concrete-filled steel tubular columns under axial compression[J].Journal of Constructional Steel Research,2019,158:15-27.
[5]AL-ANI Y R.Finite element study to address the axial capacity of the circular concrete-filled steel tubular stub columns[J].Thin-walled Structures,2018,126:2-15.
[6]HOU C C,HAN L H,LIANG Z S,et al.Performance of concrete-encased CFST subjected to low-velocity impact:shear resistance analysis[J].International Journal of Impact Engineering,2021,150:103798.
[7]YU C H,TONG J Z,TONG G S.Behavior and design of slender concrete-filled wide rectangular steel tubular columns under axial compression[J].Structures,2021,33:3137-3146.
[8]TAO Z,KATWAL U,UY B,et al.Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns[J].Journal of Structural Engineering,2021,147(6):04021061.
[9]徐 磊.钢管自应力免振混凝土轴压柱设计理论研究[D].大连:大连理工大学,2005.
XU Lei.Research on the design theory for self-stressing and self-compacting concrete filled steel tube column under axial load[D].Dalian:Dalian University of Technology,2005.
[10]黄承逵,徐 磊,刘 毅.钢管自密实自应力混凝土短柱轴压力学性能试验研究[J].大连理工大学学报,2006,46(5):696-701.
HUANG Chengkui,XU Lei,LIU Yi.Research on mechanical performance of self-compacting and self-stressing concrete-filled steel tube short column under axial loading[J].Journal of Dalian University of Technology,2006,46(5):696-701.
[11]LIU Z Z,LU Y Y,LI S,et al.Behavior of steel tube columns filled with steel-fiber-reinforced self-stressing recycled aggregate concrete under axial compression[J].Thin-walled Structures,2020,149:106521.
[12]LI N,LU Y Y,LI S,et al.Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns[J].Engineering Structures,2020,222:111108.
[13]樊舰艇.钢管自应力混凝土力学性能研究[D].武汉:武汉理工大学,2013.
FAN Jianting.Study on the mechanical properties of self-stressing concrete filled steel tube[D].Wuhan:Wuhan University of Technology,2013.
[14]徐礼华,吴 敏,周鹏华,等.钢管自应力自密实高强混凝土短柱轴心受压承载力试验研究[J].工程力学,2017,34(3):93-100.
XU Lihua,WU Min,ZHOU Penghua,et al.Experimental investigation on high-strength self-stressing and self-compacting concrete filled steel tube columns subjected to uniaxial compression[J].Engineering Mechanics,2017,34(3):93-100.
[15]徐礼华,许明耀,周鹏华,等.钢管自应力自密实高强混凝土柱偏心受压性能试验研究[J].工程力学,2017,34(7):166-176.
XU Lihua,XU Mingyao,ZHOU Penghua,et al.Experimental study on self-stressing self-compacting and high-strength concrete filled steel tubular columns under eccentric compression[J].Engineering Mechanics,2017,34(7):166-176.
[16]王金兰.预应力钢管混凝土关键性参数对轴压性能的影响研究[D].徐州:中国矿业大学,2017.
WANG Jinlan.Research on the effects of key parameters to axial behavior for pre-stressed concrete filled tube[D].Xuzhou:China University of Mining and Technology,2017.
[17]李 悦,丁庆军,胡曙光,等.钢管膨胀混凝土力学性能及其膨胀模式的研究[J].武汉工业大学学报,2000,22(6):25-28.
LI Yue,DING Qingjun,HU Shuguang,et al.Study on the mechanical properties of expansive concrete filled steel tube and its expansion model[J].Journal of Wuhan University of Technology,2000,22(6):25-28.
[18]方 圆,于 峰,张 扬,等.圆钢管自应力钢渣增强混凝土柱的受力机制及承载力计算[J].复合材料学报,2020,37(5):1211-1220.
FANG Yuan,YU Feng,ZHANG Yang,et al.Mechanical behavior and bearing capacity calculation of self-stressing steel slag aggregate reinforced concrete filled circular steel tube columns[J].Acta Materiae Compositae Sinica,2020,37(5):1211-1220.
[19]XU L,PAN J L,YANG X.Mechanical performance of self-stressing CFST columns under uniaxial compression[J].Journal of Building Engineering,2021,44:103366.
[20]金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1—2010[S].北京:中国标准出版社,2010.
Metallic materials — tensile testing — part 1:method of test at room temperature:GB/T 228.1—2010[S].Beijing:Standards Press of China,2010.
[21]WANG F C,ZHAO H Y,HAN L H.Analytical behavior of concrete-filled aluminum tubular stub columns under axial compression[J].Thin-walled Structures,2019,140:21-30.
[22]Building code requirements for structural concrete and commentary:ACI 318 R-14[S].Farmington Mills:American Concrete Institute,2014.
[23]任志刚,张 铭,魏 巍,等.圆端形钢管混凝土中长柱轴压性能[J].建筑科学与工程学报,2020,37(3):18-27.
REN Zhigang,ZHANG Ming,WEI Wei,et al.Axial compression performance of RCFST middle long columns[J].Journal of Architecture and Civil Engineering,2020,37(3):18-27.

相似文献/References:

[1]刘永健,姜 磊,张 宁.钢管混凝土中钢管的纵向容许应力[J].建筑科学与工程学报,2015,32(06):1.
 LIU Yong-jian,JIANG Lei,ZHANG Ning.Longitudinal Allowable Stress of Steel Tube in Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2015,32(06):1.
[2]李文贵,罗智予,龙 初,等.钢管混凝土与钢管再生骨料混凝土抗冲击性能研究综述[J].建筑科学与工程学报,2016,33(04):25.
 LI Wen-gui,LUO Zhi-yu,LONG Chu,et al.Review of Impact Resistance of CFST and RACFST[J].Journal of Architecture and Civil Engineering,2016,33(06):25.
[3]赵金钢,赵人达,占玉林.钢管混凝土徐变效应随机性灵敏度分析[J].建筑科学与工程学报,2016,33(04):44.
 ZHAO Jin-gang,ZHAO Ren-da,ZHAN Yu-lin.Randomness Sensitivity Analysis of Creep Effect for Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2016,33(06):44.
[4]晏巧玲,陈宝春,薛建阳.钢管混凝土平缀管格构柱换算长细比计算方法[J].建筑科学与工程学报,2016,33(06):98.
 YAN Qiao-ling,CHEN Bao-chun,XUE Jian-yang.Calculation Method on Equivalent Slenderness Ratio of Concrete-filled Steel Tube Battened Columns[J].Journal of Architecture and Civil Engineering,2016,33(06):98.
[5]黄卿维,余印根,韦建刚,等.钢管混凝土拱桥技术状况检测与评定[J].建筑科学与工程学报,2011,28(03):34.
 HUANG Qing-wei,YU Yin-gen,WEI Jian-gang,et al.Technical Detection and Assessment of Concrete-filled Steel Tubular Arch Bridge[J].Journal of Architecture and Civil Engineering,2011,28(06):34.
[6]檀永杰,徐波,吴智敏,等.基于超声对测法的钢管混凝土脱空检测试验[J].建筑科学与工程学报,2012,29(02):102.
 TAN Yong-jie,XU Bo,WU Zhi-min,et al.Experiment on Void Area Testing of Concrete-filled Steel Tube Based on Ultrasonic Testing Method[J].Journal of Architecture and Civil Engineering,2012,29(06):102.
[7]魏锦,赵均海,刘彦东,等.钢管混凝土轴压短柱的极限承载力分析[J].建筑科学与工程学报,2008,25(03):81.
 WEI Jin,ZHAO Jun-hai,LIU Yan-dong,et al.Analysis of Ultimate Bearing Capacity of Concrete-filled Steel Tubular Axial Compression Short Columns[J].Journal of Architecture and Civil Engineering,2008,25(06):81.
[8]高婧,陈宝春.波形钢板钢管混凝土柱的极限承载力[J].建筑科学与工程学报,2008,25(04):47.
 GAO Jing,CHEN Bao-chun.Ultimate Load Carrying Capacity of Concrete-filled Steel Tubular Column with Corrugated Steel Webs[J].Journal of Architecture and Civil Engineering,2008,25(06):47.
[9]王毅红,郭增辉,李先顺,等.带有芯钢管的钢管混凝土节点的受力机理[J].建筑科学与工程学报,2007,24(01):64.
 WANG Yi-hong,GUO Zeng-hui,LI Xian-shun,et al.Bearing Mechanism of Concrete-filled Steel Tubular Joint with Core Steel Tube[J].Journal of Architecture and Civil Engineering,2007,24(06):64.
[10]宋兵,王湛.高强混凝土自收缩对钢管混凝土轴压力学性能的影响[J].建筑科学与工程学报,2007,24(02):59.
 SONG Bing,WANG Zhan.Influences of Autogenous Shrinkage of High-strength Concrete on AxialCompression Mechanics Behavior of Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2007,24(06):59.

备注/Memo

备注/Memo:
收稿日期:2023-01-13
基金项目:国家自然科学基金项目(11962001); 国家重点研发计划项目(2019YFC1511103); 中国博士后科学基金项目(2018M633298);
广西自然科学基金项目(2018GXNSFBA138060)
作者简介:滕晓丹(1984-),女,工学博士,讲师,硕士生导师,E-mail:xdteng@gxu.edu.cn。
更新日期/Last Update: 2023-12-01