|本期目录/Table of Contents|

[1]陈凌阳,崔郎郎,陈永辉,等.BP神经网络预测橡胶隔震支座竖向刚度[J].建筑科学与工程学报,2023,40(06):83-90.[doi:10.19815/j.jace.2022.03092]
 CHEN Lingyang,CUI Langlang,CHEN Yonghui,et al.Prediction of vertical stiffness of rubber isolation bearings by BP neural network[J].Journal of Architecture and Civil Engineering,2023,40(06):83-90.[doi:10.19815/j.jace.2022.03092]
点击复制

BP神经网络预测橡胶隔震支座竖向刚度(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年06期
页码:
83-90
栏目:
建筑结构
出版日期:
2023-11-30

文章信息/Info

Title:
Prediction of vertical stiffness of rubber isolation bearings by BP neural network
文章编号:
1673-2049(2023)06-0083-08
作者:
陈凌阳1,崔郎郎2,陈永辉1,王宇航3,柯 珂1,3
(1. 湖南大学 土木工程学院,湖南 长沙 410082; 2. 中信重工机械股份有限公司,河南 洛阳 471039; 3. 重庆大学 土木工程学院,重庆 400045)
Author(s):
CHEN Lingyang1, CUI Langlang2, CHEN Yonghui1, WANG Yuhang3, KE Ke1,3
(1. College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. Citic Heavy Industries Co., Ltd., Luoyang 471039, Henan, China; 3. School of Civil Engineering, Chongqing University, Chongqing 400045, China)
关键词:
橡胶隔震支座 竖向刚度 参数化建模 BP神经网络
Keywords:
rubber isolation bearing vertical stiffness parametric modeling BP neural network
分类号:
TU352.12
DOI:
10.19815/j.jace.2022.03092
文献标志码:
A
摘要:
针对目前橡胶隔震支座竖向刚度理论公式不能准确计算竖向刚度的问题,建立了经试验验证的精细化ABAQUS有限元模型; 在此基础上,选取常用几何尺寸(内、外径)、单层橡胶厚度、橡胶层数构造参数矩阵,基于大量有限元分析数据得出了橡胶隔震支座竖向刚度的BP神经网络预测模型; 最后,基于有限元分析结果对BP神经网络模型、中国橡胶隔震支座规范和文献提出的竖向刚度计算公式进行了评估。结果表明:建立的基于内径、外径、单层橡胶厚度和橡胶层数的橡胶隔震支座竖向刚度BP神经网络预测模型精度较高; BP神经网络预测结果与试验结果的相关系数趋近于1,基于BP神经网络对橡胶隔震支座竖向刚度进行计算和预估完全可行; BP神经网络模型相对于传统拟合方法能更好解决多变量线性耦合关系。
Abstract:
Aiming at the problem that the vertical stiffness of rubber isolation bearings can not be accurately calculated by the theoretical formula at present, a refined ABAQUS finite element model verified by tests was established. On the basis, the common geometric dimensions(inner and outer diameters), the thickness of single-layer rubber and the number of rubber layers were selected to construct parameter matrices, and the BP neural network prediction model of vertical stiffness of rubber isolation bearings was obtained based on a large quantity of finite element analysis data. Finally, based on the finite element analysis results, the BP neural network model, China's rubber isolation bearing specifications and the vertical stiffness calculation formula proposed in literature were evaluated. The results show that the established BP neural network prediction model of vertical stiffness of rubber isolation bearings based on inner diameter, outer diameter, thickness of single rubber layer and number of rubber layers has high accuracy. The correlation coefficient between the predicted results of the BP neural network and the experimental results approaches 1, and it is completely feasible to calculate and estimate the vertical stiffness of rubber isolation bearings based on the BP neural network. The BP neural network model can better solve multivariable linear coupling relationships compared to traditional fitting methods.

参考文献/References:

[1] 建筑隔震橡胶支座:JG 118—2000[S].北京:中国建筑工业出版社,2000.
Rubber isolation bearings for buildings:JG 118—2000[S].Beijing:China Architecture & Building Press,2000.
[2]肖 畅,盛 涛,金红亮.橡胶隔震支座竖向刚度有限元模拟与试验研究[J].空间结构,2019,25(3):67-71.
XIAO Chang,SHENG Tao,JIN Hongliang.Finite element simulation and experimental study on vertical stiffness of rubber isolation bearings[J].Spatial Structures,2019,25(3):67-71.
[3]徐永秋,刘文光.厚层橡胶隔震支座的竖向力学性能与试验分析[J].浙江建筑,2008,25(6):30-32.
XU Yongqiu,LIU Wenguang.Vertical mechanical property and experimental analysis of thick bedded rubber vibration isolation bearing[J].Zhejiang Construction,2008,25(6):30-32.
[4]何文福,刘文光,杨彦飞,等.厚层橡胶隔震支座基本力学性能试验[J].解放军理工大学学报(自然科学版),2011,12(3):258-263.
HE Wenfu,LIU Wenguang,YANG Yanfei,et al.Basic mechanical properties of thick rubber isolators[J].Journal of PLA University of Science and Technology(Natural Science Edition),2011,12(3):258-263.
[5]陈浩文.厚肉型橡胶隔振支座在地铁周边建筑物隔振中的应用[D].北京:清华大学,2014.
CHEN Haowen.Application of thick rubber bearing in vibration isolation for metro surrounding building structures[D].Beijing:Tsinghua University,2014.
[6]FUKASAWA T,OKAMURA S,YAMAMOTO T,et al.Development on rubber bearings for sodium-cooled fast reactor:part 2 — fundamental characteristics of half-scale rubber bearings based on static test[C]//ASME.Proceedings of ASME 2015 Pressure Vessels and Piping Conference.Boston:ASME,2015:1-10.
[7]刘文光,三山刚史,冯德民,等.橡胶隔震支座竖向刚度简化计算法[J].地震工程与工程振动,2001,21(4):111-116.
LIU Wenguang,MIYAMA Takafumi,FENG Demin,et al.A Simple method for computing vertical stiffness of rubber bearings[J].Earthquake Engineering and Engineering Vibration,2001,21(4):111-116.
[8]邹立华,饶 宇,黄 凯,等.预应力厚层橡胶支座隔震性能研究[J].建筑结构学报,2013,34(2):76-82.
ZOU Lihua,RAO Yu,HUANG Kai,et al.Research on isolating property of prestressed thick rubber bearings[J].Journal of Building Structures,2013,34(2):76-82.
[9]LINDLEY P B.Natural rubber structural bearings[C]//American Concrete Institute.Joint Sealing and Bearing System for Concrete Structures.Detroit:American Concrete Institute,1981:353-378.
[10]王奕可,谢壮宁,黄用军.矩形平面超高层建筑横风向气动力谱的神经网络预测[J].振动工程学报,2023,36(2):326-333.
WANG Yike,XIE Zhuangning,HUANG Yongjun.Neural network prediction of across-wind aerodynamic spectrum of rectangular plane super high-rise buildings[J].Journal of Vibration Engineering,2023,36(2):326-333.
[11]刘 鸣.TRC加固RC柱抗震性能的有限元分析[D].徐州:中国矿业大学,2019.
LIU Ming.Finite element analysis of seismic performance of RC columns strengthened with TRC[D].Xuzhou:China University of Mining and Technology,2019.
[12]HORTON T A,HAJIRASOULIHA I,DAVISON B,et al.Accurate prediction of cyclic hysteresis behaviour of RBS connections using Deep Learning Neural Networks[J].Engineering Structures,2021,247:113156.
[13]橡胶支座 第3部分:建筑隔震橡胶支座:GB 20688.3—2006[S].北京:中国标准出版社,2006.
Rubber bearing — Part 3:elastomeric seismic-protection isolators for buildings:GB 20688.3—2006[S].Beijing:Standards Press of China,2006.
[14]王靖雯.厚叠层橡胶隔震支座力学性能研究及稳定性分析[D].广州:广州大学,2020.
WANG Jingwen.Research on mechanical performance and stability analysis of thick laminated rubber bearing[D].Guangzhou:Guangzhou University,2020.
[15]Dassault Systemes.ABAQUS 6.12 analysis users manual volume IIE[M].Paris:Dassault Systemes,2012.
[16]王小莉.橡胶隔振器多轴疲劳寿命预测方法研究[D].广州:华南理工大学,2014.
WANG Xiaoli.Studies on life prediction of multiaxial fatigue for rubber isolators[D].Guangzhou:South China University of Technology,2014.
[17]SOZEN A,ARCAKLOGLU E,OZALP M,et al.Forecasting based on neural network approach of solar potential in Turkey[J].Renewable Energy,2005,30(7):1075-1090.
[18]KERMANSHAHI B.Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities[J].Neurocomputing,1998,23(1/2/3):125-133.
[19]HAGAN M T,MENHAJ M B.Training feedforward networks with the Marquardt algorithm[J].IEEE Transactions on Neural Networks,1994,5(6):989-993.

相似文献/References:

[1]王毅红,靳 娜,孙艺嘉,等.橡胶隔震支座应用于村镇低矮砌体结构的抗震性能及构造设计[J].建筑科学与工程学报,2015,32(05):25.
 WANG Yi-hong,JIN Na,SUN Yi-jia,et al.Seismic Performance and Construction Design of Rubber Isolation Bearing Applied in Rural Low-rise Masonry Structure[J].Journal of Architecture and Civil Engineering,2015,32(06):25.
[2]徐忠根,朱祥盛,邓长根.有初始转角的隔震支座在不同方向地震水平力作用下的力学性能研究[J].建筑科学与工程学报,2017,34(04):41.
 XU Zhong-gen,ZHU Xiang-sheng,DENG Chang-gen.Research on Mechanical Properties of Rubber Bearings with Initial Rotation Under Horizontal Seismic Forces in Different Directions[J].Journal of Architecture and Civil Engineering,2017,34(06):41.

备注/Memo

备注/Memo:
收稿日期:2023-01-07
基金项目:工信部高技术船舶科研项目(MC-202014-S01)
通信作者:柯 珂(1987-),男,工学博士,研究员,博士生导师,E-mail:ke.ke@cqu.edu.cn。
更新日期/Last Update: 2023-12-01