|本期目录/Table of Contents|

[1]章定文,杨大勇,张小飞,等.橡胶止水带变形适应性与优化设计研究[J].建筑科学与工程学报,2023,40(06):127-136.[doi:10.19815/j.jace.2022.10073]
 ZHANG Dingwen,YANG Dayong,ZHANG Xiaofei,et al.Study on deformation adaptability and optimization design of rubber water stop[J].Journal of Architecture and Civil Engineering,2023,40(06):127-136.[doi:10.19815/j.jace.2022.10073]
点击复制

橡胶止水带变形适应性与优化设计研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年06期
页码:
127-136
栏目:
桥梁工程
出版日期:
2023-11-30

文章信息/Info

Title:
Study on deformation adaptability and optimization design of rubber water stop
文章编号:
1673-2049(2023)06-0127-10
作者:
章定文1,杨大勇1,张小飞2,陆佳敏2,高 雷2,李望舒2
(1. 东南大学 交通学院,江苏 南京 211189; 2. 昆山交通发展控股集团有限公司,江苏 昆山 215300)
Author(s):
ZHANG Dingwen1, YANG Dayong1, ZHANG Xiaofei2, LU Jiamin2, GAO Lei2, LI Wangshu2
(1. School of Transportation, Southeast University, Nanjing 211189, Jiangsu, China; 2. Kunshan Transportation Development Holding Group Co., Ltd., Kunshan 215300, Jiangsu, China)
关键词:
隧道工程 橡胶止水带 差异沉降 有限元 优化设计
Keywords:
tunnel engineering rubber water stop differential settlement finite element optimal design
分类号:
TU57
DOI:
10.19815/j.jace.2022.10073
文献标志码:
A
摘要:
橡胶止水带是隧道接缝处最常用的防水措施,但工程实践中橡胶止水带常因隧道接缝处差异沉降过大而发生破坏,进而引发渗漏水病害。采用ABAQUS软件数值模拟方法,分析橡胶止水带的变形适应性,并对其截面形式进行优化设计,提出了适用于更大差异沉降的椭圆形中孔橡胶止水带。结果表明:接缝处的差异沉降是决定橡胶止水带能否起到预定防水效果的关键因素; 工程中常用的圆形中孔橡胶止水带最大能承受约30 mm的差异沉降; 椭圆形中孔橡胶止水带长半轴可减少止水带在差异沉降下的拉伸和剪切应力,并可将止水带的拉伸转换为紧贴混凝土表面的滑动,有效提升了止水带的变形适应性; 橡胶止水带中孔面积占比和长半轴与短半轴长度比值的乘积可有效表征橡胶止水带变形适应性能,其值与椭圆形中孔橡胶止水带可承受的最大差异沉降具有线性关系; 椭圆形中孔面积占比合理取值为0.3~0.4,长半轴和短半轴长度比值的合理取值为1~2.5。
Abstract:
Rubber water stops are the most commonly used waterproofing measure at tunnel joints. However, in engineering practice, rubber water stops are often damaged by excessive differential settlement at tunnel joints, which in turn causes water leakage diseases. The ABAQUS software numerical simulation method was used to analyze the deformation adaptability of the rubber water stop, and the cross-section form was optimized. An elliptical middle-hole rubber water stop suitable for larger differential settlement was proposed. The results show that the differential settlement at the joint is the key factor determining whether the rubber water stop can achieve the predetermined waterproof effect. The circular hole rubber water stops commonly used in the project can withstand the maximum differential settlement of about 30 mm. The long half-axis of the elliptical medium-hole rubber water stop can reduce the tensile and shear stress of the water stop under differential settlement, and can convert the tension of the water stop into the sliding close to the concrete surface, which effectively improves the deformation adaptability of the water stop. The product of the ratio of the area of the hole in the rubber water stop and the ratio of the length of the long half axis to the length of the short half axis can effectively characterize the deformation adaptability of the rubber water stop, and its value has a linear relationship with the maximum differential settlement that the elliptical hole rubber water stop can withstand. The reasonable value of the area ratio of the elliptical hole is 0.3-0.4, and the reasonable value of the length ratio of the long half axis and the short half axis is 1-2.5.

参考文献/References:

[1] 刘 强.大断面临海隧道结构防排水技术研究[D].北京:北京交通大学,2016.
LIU Qiang.Structural waterproofing and drainage technology of large section near sea tunnel[D].Beijing:Beijing Jiaotong University,2016.
[2]龚琛杰,丁文其,雷明锋,等.营运越江盾构隧道渗漏水病害特征及整治研究[J].现代隧道技术,2020,57(增1):247-254.
GONG Chenjie,DING Wenqi,LEI Mingfeng,et al.Case study on water leakage features and repair works of operational river-passing shield tunnel[J].Modern Tunnelling Technology,2020,57(S1):247-254.
[3]王会霞.公路隧道衬砌抗水压性能研究[D].广州:华南理工大学,2013.
WANG Huixia.Analysis on the lining against water pressure for highway tunnel[D].Guangzhou:South China University of Technology,2013.
[4]MOHANADAS P N,SANTHANAKRISHNAN T,MANOJ N R,et al.Accelerated aging behavior and life prediction of low-temperature vulcanizable CR-BIIR blend based encapsulant material for undersea sensors[J].Polymers and Polymer Composites,2021,29(9S):S501-S510.
[5]肖明清,谢宏明,王士民,等.盾构隧道管片接缝防水体系演化历程与展望[J].隧道建设(中英文),2021,41(11):1891-1902.
XIAO Mingqing,XIE Hongming,WANG Shimin,et al.Evolution and prospects of shield tunnel joints and segment waterproofing systems[J].Tunnel Construction,2021,41(11):1891-1902.
[6]王茂华,杨锡阶,王茂伟.水工建筑物用橡胶止水带强度试验方法的探讨[J].中国新技术新产品,2010(23):192.
WANG Maohua,YANG Xijie,WANG Maowei.Discussion on strength test method of rubber water stop for hydraulic structures[J].China New Technologies and Products,2010(23):192.
[7]蒋林华,李兴贵,梁正平.原型伸缩缝橡胶止水带工程特性试验研究[J].河海大学学报,1994,22(2):51-56.
JIANG Linhua,LI Xinggui,LIANG Zhengping.Experimental study on engineering properties of prototype expansion joint rubber waterstop[J].Journal of Hohai University(Natural Sciences),1994,22(2):51-56.
[8]SHI C H,CAO C Y,LEI M F,et al.Sealant performance test and stress-seepage coupling model for tunnel segment joints[J].Arabian Journal for Science and Engineering,2019,44(5):4201-4212.
[9]CHO B H,NAM B H,SEO S,et al.Waterproofing performance of waterstop with adhesive bonding used at joints of underground concrete structures[J].Construction and Building Materials,2019,221:491-500.
[10]沈佳佳.地铁盾构隧道管片接头抗渗与耐久性能演化研究[D].长沙:中南大学,2014.
SHEN Jiajia.Research on impermeability and durability evolution of segment joint of shield tunnel[D].Changsha:Central South University,2014.
[11]董林伟.装配式地铁车站与暗挖区间防水性能试验研究[D].北京:中国矿业大学(北京),2018.
DONG Linwei.Study on waterproof performance test of fabricated subway station and subsurface excavation section[D].Beijing:China University of Mining & Technology-Beijing,2018.
[12]林品杰,赵志红,范宝秀,等.管廊变形缝橡胶止水带的变形能力及尺寸优化分析[J].科技通报,2020,36(10):57-63.
LIN Pinjie,ZHAO Zhihong,FAN Baoxiu,et al.Analysis of the deformation capacity and size optimization of rubber waterstop in the deformation joint of utility tunnel[J].Bulletin of Science and Technology,2020,36(10):57-63.
[13]WU Y M,WU H P,CHU D H,et al.Failure mechanism analysis and optimization analysis of tunnel joint waterstop considering bonding and extrusion[J].Applied Sciences,2022,12(11):5737.
[14]胡健中,王 勇,徐国平,等.沉管隧道国产化GINA止水带试验研究及选型设计[J].现代隧道技术,2020,57(4):171-177.
HU Jianzhong,WANG Yong,XU Guoping,et al.Experimental study and selection design of domestic GINA gasket for the immersed tunnel[J].Modern Tunnelling Technology,2020,57(4):171-177.
[15]刘思源.高混凝土面板坝接缝止水结构数值模拟分析及位移变形试验研究[D].郑州:华北水利水电大学,2019.
LIU Siyuan.Numerical simulation analysis and displacement deformation experiment on the slab joint waterstop structure of high CFRD[D].Zhengzhou:North China University of Water Resources and Electric Power,2019.
[16]LI X E,ZHOU S H,DI H G,et al.Evaluation and experimental study on the sealant behaviour of double gaskets for shield tunnel lining[J].Tunnelling and Underground Space Technology,2018,75:81-89.
[17]檀春丽,徐 骞,常晓磊,等.反应型复合止水带性能研究及工程应用[J].中国建筑防水,2022(9):55-61.
TAN Chunli,XU Qian,CHANG Xiaolei,et al.Performance study and engineering application of reactive composite water stop[J].China Building Waterproofing,2022(9):55-61.
[18]孟 川,李 蓉,刘军宏,等.中贴式橡胶止水带研究Ⅰ:橡胶条拉拔试验及数值模拟[J].水力发电,2021,47(11):69-72,95.
MENG Chuan,LI Rong,LIU Junhong,et al.Research on internally-side attached rubber waterstop belt:part Ⅰ pull-out tests of rubber strip and its numerical simulation[J].Water Power,2021,47(11):69-72,95.
[19]LI C J,YUAN Z,YE L.Facile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate(ZDMA)rubber composites:highly reinforcing effect and improvement mechanism of sealing resilience[J].Composites Part A:Applied Science and Manufacturing,2019,126:105580.
[20]地下工程防水技术规范:GB 50108—2008[S].北京:中国计划出版社,2008.
Technical code for waterproofing of underground works:GB 50108—2008[S].Beijing:China Planning Press,2008.
[21]王文涛,上官文斌,段小成.超弹性本构模型对橡胶隔振器静态特性预测影响的研究[J].汽车工程,2012,34(6):544-550,539.
WANG Wentao,SHANGGUAN Wenbin,DUAN Xiaocheng.A study on the effects of hyperelastic constitutive models on the static characteristic prediction of rubber isolator[J].Automotive Engineering,2012,34(6):544-550,539.
[22]SHI C H,CAO C Y,LEI M F,et al.Time-dependent performance and constitutive model of EPDM rubber gasket used for tunnel segment joints[J].Tunnelling and Underground Space Technology,2015,50:490-498.
[23]杨大勇,张小飞,章定文,等.隧道接缝橡胶止水带老化性能试验研究与分析[J].地基处理,2022,4(增1):51-57.
YANG Dayong,ZHANG Xiaofei,ZHANG Dingwen,et al.Experimental research and analysis on aging performance of rubber waterstop for tunnel joints[J].Journal of Ground Improvement,2022,4(S1):51-57.
[24]SCHNEIDER H.Durability test and prediction of Geotextiles and related products[C]//DEN HOEDT G.Proceedings of the 4th International Conference on Geotextiles,Geomembranes and Related Products.Hague:Balkma A A,1990.
[25]郝巨涛,贾金生,瞿 扬,等.橡胶止水带强度特性的试验研究[J].水力发电,2001,27(5):56-58.
HAO Jutao,JIA Jinsheng,QU Yang,et al.Experimental study on strength characteristics of rubber water stop[J].Water Power,2001,27(5):56-58.
[26]林品杰.管廊变形缝橡胶止水带变形性能优化及结构形式创新研究[D].杭州:浙江大学,2020.
LIN Pinjie.Research on deformation performance optimization and structural innovation of rubber waterstop for deformation joint of pipe gallery[D].Hangzhou:Zhejiang University,2020.

相似文献/References:

[1]石 刚,富志鹏,谢永利,等.公路隧道穿越采空区的探测与处理技术研究[J].建筑科学与工程学报,2014,31(03):64.
 SHI Gang,FU Zhi-peng,XIE Yong-li,et al.Research on Detection and Treatment Technology of Exhausted Areas in Highway Tunnel Construction[J].Journal of Architecture and Civil Engineering,2014,31(06):64.
[2]赵 颖,赵亚哥白,郭恩栋,等.通过活断层区地铁隧道损伤分析[J].建筑科学与工程学报,2015,32(06):82.
 ZHAO Ying,ZHAO Ya-gebai,GUO En-dong,et al.Damage Analysis of Metro Tunnel Across Active Fault[J].Journal of Architecture and Civil Engineering,2015,32(06):82.
[3]孙铁军,王 伟,罗明睿,等.不同衬砌结构缺陷对隧道结构整体安全性的影响[J].建筑科学与工程学报,2017,34(03):82.
 SUN Tie-jun,WANG Wei,LUO Ming-rui,et al.Influences of Different Lining Structure Defects on Overall Safety of Tunnel Structure[J].Journal of Architecture and Civil Engineering,2017,34(06):82.
[4]朱彦鹏,何江飞,李军.黄土公路隧道浅埋段管棚注浆支护机理及监测分析[J].建筑科学与工程学报,2011,28(01):11.
 ZHU Yan-peng,HE Jiang-fei,LI Jun.Support Mechanism and Monitoring Analysis of Pipe Roof Grouting for Loess Highway Tunnel in Shallow-buried Section[J].Journal of Architecture and Civil Engineering,2011,28(06):11.
[5]陈建勋,乔雄.黄土隧道浅埋偏压洞口段套拱结构受力监测与分析[J].建筑科学与工程学报,2011,28(01):100.
 CHEN Jian-xun,QIAO Xiong.Mechanical Monitoring and Analysis of Umbrella Arch Structure in Shallow-buried Bias Loess Tunnel Entrance[J].Journal of Architecture and Civil Engineering,2011,28(06):100.
[6]王梦恕.台湾海峡越海通道方案前期研究[J].建筑科学与工程学报,2012,29(03):4.
 WANG Meng-shu.Preliminary Research on Taiwan Strait Cross-sea Channel Schemes[J].Journal of Architecture and Civil Engineering,2012,29(06):4.
[7]张立鑫,陈丽俊,陈建勋,等.单斜构造软硬互层围岩隧道变形特征及控制对策[J].建筑科学与工程学报,2021,38(06):186.[doi:10.19815/j.jace.2021.04102]
 ZHANG Li-xin,CHEN Li-jun,CHEN Jian-xun,et al.Deformation Characteristics and Treatment Measures of Tunnels in Soft and Hard Interbedded Surrounding Rock with Tilted Stratum[J].Journal of Architecture and Civil Engineering,2021,38(06):186.[doi:10.19815/j.jace.2021.04102]
[8]李大军,何鹏飞,宋克志,等.复杂硐室交叉口转向挑顶施工力学行为研究[J].建筑科学与工程学报,2023,40(02):172.[doi:10.19815/j.jace.2022.11120]
 LI Dajun,HE Pengfei,SONG Kezhi,et al.Research on construction mechanical behavior of turning overhanging at intersection of complex chamber[J].Journal of Architecture and Civil Engineering,2023,40(06):172.[doi:10.19815/j.jace.2022.11120]
[9]杨晓华,曹扬帆,肖 靖,等.开挖方式对跨基覆界面浅埋偏压隧道变形的影响分析[J].建筑科学与工程学报,2023,40(03):111.[doi:10.19815/j.jace.2021.11023]
 YANG Xiaohua,CAO Yangfan,XIAO Jing,et al.Analysis of influence of excavation methods on deformation of shallow-buried bias tunnels across base and cover interface[J].Journal of Architecture and Civil Engineering,2023,40(06):111.[doi:10.19815/j.jace.2021.11023]
[10]王永刚,尉 敏,王 江,等.涨壳式预应力中空锚杆支护效果及注浆工艺改进研究[J].建筑科学与工程学报,2023,40(03):142.[doi:10.19815/j.jace.2022.12055]
 WANG Yonggang,YU Min,WANG Jiang,et al.Study on supporting effect of expansion-shell pre-stressed hollow anchor and improvement of grouting technology[J].Journal of Architecture and Civil Engineering,2023,40(06):142.[doi:10.19815/j.jace.2022.12055]

备注/Memo

备注/Memo:
收稿日期:2023-02-19
基金项目:国家自然科学基金项目(52078129); 昆山交通发展控股集团科技项目(KTDC-FG-JS-20210039)
作者简介:章定文(1978-),男,工学博士,教授,博士生导师,E-mail:zhang@seu.edu.cn。
更新日期/Last Update: 2023-12-01