|本期目录/Table of Contents|

[1]高 崇.低液限黏土冻结热物理参数及热传导模型试验研究[J].建筑科学与工程学报,2023,40(06):181-190.[doi:10.19815/j.jace.2023.08011]
 GAO Chong.Experimental study on thermophysical parameters and heat conduction model of low liquid limit clay during freezing[J].Journal of Architecture and Civil Engineering,2023,40(06):181-190.[doi:10.19815/j.jace.2023.08011]
点击复制

低液限黏土冻结热物理参数及热传导模型试验研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
40卷
期数:
2023年06期
页码:
181-190
栏目:
岩土工程
出版日期:
2023-11-30

文章信息/Info

Title:
Experimental study on thermophysical parameters and heat conduction model of low liquid limit clay during freezing
文章编号:
1673-2049(2023)06-0181-10
作者:
高 崇
(中铁十九局集团有限公司,北京 101300)
Author(s):
GAO Chong
(China Railway 19th Bureau Group Corporation Limited, Beijing 101300, China)
关键词:
地铁联络通道 人工冻结法 热物理参数 热传导模型 核磁共振
Keywords:
subway contact channel artificial freezing method thermophysical parameter heat conduction model nuclear magnetic resonance
分类号:
TU443
DOI:
10.19815/j.jace.2023.08011
文献标志码:
A
摘要:
为了研究不同温度条件下饱和度、比热容、相变潜热、未冻水含量等对人工冻结法的影响,以昆明地铁联络通道冻结法施工为背景,将该地区低液限黏土作为研究对象开展试验,探明了未冻水含量、热物理参数的变化规律; 建立了正交球缺接触热传导模型并对照室内试验结果进行验证。结果表明:当温度持续降低到某温度范围(-15~-8 ℃)时,土中未冻水含量变化不大,据此可优化降温计划; 在负温段,不同饱和度试样未冻水含量与相变潜热呈负相关,饱和度与相变潜热正相关; 导热系数与比热容随温度的变化表现为两个阶段,并在0~-10 ℃温度范围内迅速降低后趋于平稳; 所建立的正交球缺接触热传导模型能可靠计算任意时刻未冻水量并预测热物理参数变化趋势,可为减少冻结工作中热物理参数的测量工作量提供参考。
Abstract:
In order to study the influence of saturation, specific heat capacity, latent heat of phase change and unfrozen water content on the artificial freezing method under different temperature conditions, the low liquid limit clay in the area was taken as the research object to carry out the experiment based on the freezing method construction of Kunming subway contact passage, and the variation law of unfrozen water content and thermophysical parameters was explored. An orthogonal ball-missing contact heat conduction model was established and verified by laboratory test results. The results show that when the temperature continues to drop to a certain temperature range(from -15 ℃ to -8 ℃), the content of unfrozen water in soil does not change much, so the cooling plan can be optimized. In the negative temperature section, the unfrozen water content of the samples with different saturation is negatively correlated with the latent heat of phase transition, and the saturation is positively correlated with the latent heat of phase transition. The change of thermal conductivity and specific heat capacity with temperature is manifested in two stages, and decreases rapidly in the temperature range from 0 ℃ to -10 ℃ and then becomes stable. The established orthogonal spherical contact heat conduction model can calculate the amount of unfrozen water at any time and predict the change trend of thermal physical parameters, which can provide reference for reducing the measurement workload of thermal physical parameters in freezing work.

参考文献/References:

[1] 骆维斌,乔 雄,倪伟淋,等.隧道新型装配式临时支撑结构研发及技术研究[J].建筑科学与工程学报,2022,39(5):262-273.
LUO Weibin,QIAO Xiong,NI Weilin,et al.Development and technical research of new prefabricated temporary support structure for tunnel[J].Journal of Architecture and Civil Engineering,2022,39(5):262-273.
[2]邓 碧,张俊伟,诸葛绪松,等.软土地层并行曲线隧道施工顺序对既有隧道的影响[J].建筑科学与工程学报,2021,38(6):170-176.
DENG Bi,ZHANG Junwei,ZHUGE Xusong,et al.Influence of construction sequence of parallel curved tunnels on existing tunnels in soft soil stratum[J].Journal of Architecture and Civil Engineering,2021,38(6):170-176.
[3]张立鑫,陈丽俊,陈建勋,等.单斜构造软硬互层围岩隧道变形特征及控制对策[J].建筑科学与工程学报,2021,38(6):186-196.
ZHANG Lixin,CHEN Lijun,CHEN Jianxun,et al.Deformation characteristics and treatment measures of tunnels in soft and hard interbedded surrounding rock with tilted stratum[J].Journal of Architecture and Civil Engineering,2021,38(6):186-196.
[4]鲁先龙,陈湘生,陈 曦.人工地层冻结法风险预控[J].岩土工程学报,2021,43(12):2308-2314.
LU Xianlong,CHEN Xiangsheng,CHEN Xi.Risk prevention and control of artificial ground freezing(AGF)[J].Chinese Journal of Geotechnical Engineering,2021,43(12):2308-2314.
[5]刘志强,洪伯潜,龙志阳.矿井建设科研成就60年[J].建井技术,2017,38(5):1-6.
LIU Zhiqiang,HONG Boqian,LONG Zhiyang.60 years science and research achievements of mine construction[J].Mine Construction Technology,2017,38(5):1-6.
[6]HU X D,DENG S J.Ground freezing application of intake installing construction of an underwater tunnel[J].Procedia Engineering,2016,165:633-640.
[7]刘志强.矿井建设技术发展概况及展望[J].煤炭工程,2018,50(6):44-46,50.
LIU Zhiqiang.Overview and outlook on development of mine construction technologies[J].Coal Engineering,2018,50(6):44-46,50.
[8]汪仁和,王 伟.冻结孔偏斜下冻结壁温度场的形成特征与分析[J].岩土工程学报,2003,25(6):658-661.
WANG Renhe,WANG Wei.Analysis for features of the freezing temperature field under deflective pipes[J].Chinese Journal of Geotechnical Engineering,2003,25(6):658-661.
[9]张 婷,杨 平,王效宾.浅表土人工冻土冻胀特性的研究[J].南京林业大学学报(自然科学版),2010,34(4):65-68.
ZHANG Ting,YANG Ping,WANG Xiaobin.Experimental research on the frost heave behavior of shallow top soil[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(4):65-68.
[10]KOZLOWSKI T.Soil freezing point as obtained on melting[J].Cold Regions Science and Technology,2004,38(2/3):93-101.
[11]KURYLYK B L,WATANABE K.The mathematical representation of freezing and thawing processes in variably-saturated,non-deformable soils[J].Advances in Water Resources,2013,60:160-177.
[12]WATANABE K,OSADA Y.Simultaneous measurement of unfrozen water content and hydraulic conductivity of partially frozen soil near 0 ℃[J].Cold Regions Science and Technology,2017,142:79-84.
[13]KOZLOWSKI T,NARTOWSKA E.Unfrozen water content in representative bentonites of different origin subjected to cyclic freezing and thawing[J].Vadose Zone Journal,2013,12(1):1-11.
[14]CHAI M T,ZHANG J M,ZHANG H,et al.A method for calculating unfrozen water content of silty clay with consideration of freezing point[J].Applied Clay Science,2018,161:474-481.
[15]MU Q,NG C,ZHOU C,et al.A new model for capturing void ratio-dependent unfrozen water characteristics curves[J].Computers and Geotechnics,2018,101:95-99.
[16]ZHOU J Z,WEI C F,LAI Y M,et al.Application of the generalized Clapeyron equation to freezing point depression and unfrozen water content[J].Water Resources Research,2018,54(11):9412-9431.
[17]TARNAWSKI V R,GORI F.Enhancement of the cubic cell soil thermal conductivity model[J].International Journal of Energy Research,2002,26(2):143-157.
[18]TARNAWSKI V R,LEONG W H.Thermal conductivity of soils at very low moisture content and moderate temperatures[J].Transport in Porous Media,2000,41(2):137-147.
[19]DONG Y,MCCARTNEY J S,LU N.Critical review of thermal conductivity models for unsaturated soils[J].Geotechnical and Geological Engineering,2015,33(2):207-221.
[20]SADEGHI M,GHANBARIAN B,HORTON R.Derivation of an explicit form of the percolation-based effective-medium approximation for thermal conductivity of partially saturated soils[J].Water Resources Research,2018,54(2):1389-1399.
[21]张 涛,刘松玉,张 楠,等.土体热传导性能及其热导率模型研究[J].建筑材料学报,2019,22(1):72-80.
ZHANG Tao,LIU Songyu,ZHANG Nan,et al.Research of soil thermal conduction properties and its thermal conductivity model[J].Journal of Building Materials,2019,22(1):72-80.
[22]JOHANSEN O.Thermal conductivity of soils[D].Trondheim:University of Trondheim,1975.
[23]原喜忠,李 宁,赵秀云,等.非饱和(冻)土导热系数预估模型研究[J].岩土力学,2010,31(9):2689-2694.
YUAN Xizhong,LI Ning,ZHAO Xiuyun,et al.Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J].Rock and Soil Mechanics,2010,31(9):2689-2694.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-08-03
基金项目:国家自然科学基金项目(41672305)
作者简介:高 崇(1986-),女,高级工程师,E-mail:656059458@qq.com。
更新日期/Last Update: 2023-12-01