|本期目录/Table of Contents|

[1]张松柯,董志骞,王沙燚,等.钢筋混凝土烟囱洞口受力性能参数分析[J].建筑科学与工程学报,2024,41(01):146-157.[doi:10.19815/j.jace.2022.03121]
 ZHANG Songke,DONG Zhiqian,WANG Shayi,et al.Parameter analysis of mechanical performance of reinforced concrete chimney openings[J].Journal of Architecture and Civil Engineering,2024,41(01):146-157.[doi:10.19815/j.jace.2022.03121]
点击复制

钢筋混凝土烟囱洞口受力性能参数分析(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年01期
页码:
146-157
栏目:
建筑结构
出版日期:
2024-01-20

文章信息/Info

Title:
Parameter analysis of mechanical performance of reinforced concrete chimney openings
文章编号:
1673-2049(2024)01-0146-12
作者:
张松柯1,董志骞1,王沙燚2,李 钢1,刘春刚2,杨 眉2,余丁浩1,霍林生1
(1. 大连理工大学 海岸和近海工程国家重点实验室,辽宁 大连 116024; 2. 中国电力工程顾问集团东北电力设计院有限公司,吉林 长春 130021)
Author(s):
ZHANG Songke1, DONG Zhiqian1, WANG Shayi2, LI Gang1, LIU Chungang2, YANG Mei2, YU Dinghao1, HUO Linsheng1
(1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; 2. Northeast Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Changchun 130021, Jilin, China)
关键词:
钢筋混凝土烟囱 参数分析 应力集中 缩尺模型
Keywords:
reinforced concrete chimney parameter analysis stress concentration scaled model
分类号:
TU279
DOI:
10.19815/j.jace.2022.03121
文献标志码:
A
摘要:
为探究影响洞口应力集中现象的最主要参数及洞口补强设计方法,首先开展了缩尺模型试验,分析了洞口周围应力状态,通过对比试验结果与数值模拟结果验证了分析方法的准确性; 随后建立了49个不同参数的数值分析模型并开展静力弹塑性分析,分别研究了烟囱筒壁厚度、筒壁直径、开洞尺寸、开洞间距等参数对洞口周围应力状态的影响,确定了影响洞口应力集中现象的最主要参数,给出了开洞限值建议,提出了加密配筋设计方法。结果表明:烟囱开设单个洞口时,开洞横截面圆心角应小于70°,开设多个洞口时,总圆心角应小于140°,洞口间距不宜小于0.5倍洞口横向宽度; 圆形洞口钢筋补强区域范围宜取4.5倍壁厚,矩形洞口宜取3.5倍壁厚,增加的补强钢筋宜取1.3倍非补强区配筋率; 通过地震作用下动力反应分析验证了提出的洞口补强方法可有效减小洞口周围的应力集中程度,改善洞口所在区段的受力性能。
Abstract:
In order to explore the most important parameters that affect the stress concentration phenomenon at the opening and the design method for the reinforcement of the opening, a scaled model test was carried out firstly, and the stress state around the opening was analyzed. By comparing with the numerical simulation results, the accuracy of the analysis method was verified. Subsequently, 49 numerical analysis models with different parameters were established and static elastic-plastic analysis was conducted. The effects of chimney wall thickness, wall diameter, opening size, and opening spacing on the stress state around the opening were studied separately. The main parameters that affect the stress concentration phenomenon at the opening were determined, and suggestions for the opening limit value were given. A design method for dense reinforcement were proposed. The results show that when the chimney has only one opening, the center angle of the cross-section of the opening should be less than 70°. When there are multiple openings, the whole central angle of all openings should be less than 140°, and the spacing between the openings should not be less than 0.5 times the lateral width of the opening. The range of reinforcement area for circular openings should be 4.5 times the wall thickness, for rectangular openings should be 3.5 times the wall thickness, and for additional reinforcement bars, 1.3 times the reinforcement ratio for non reinforcement areas should be taken. The dynamic response analysis under earthquake action has verified that the proposed reinforcement method for the opening can effectively reduce the degree of stress concentration around the opening and improve the mechanical performance of the section where the opening is located.

参考文献/References:

[1] 吴若阳.异型钢筋混凝土烟囱抗震弹塑性分析及结构性能研究[D].南京:东南大学,2014.
WU Ruoyang.Elastic-plastic seismic response analysis and performance study on the special-shaped reinforced concrete chimney[D].Nanjing:Southeast University,2014.
[2]朱峰岐,刘焕芹.异形烟囱结构抗震性能研究[J].建筑结构,2017,47(15):31-35.
ZHU Fengqi,LIU Huanqin.Seismic performance research of special-shaped chimney structure[J].Building Structure,2017,47(15):31-35.
[3]HUANG W,GOULD P L,MARTINEZ R,et al.Non-linear analysis of a collapsed reinforced concrete chimney[J].Earthquake Engineering & Structural Dynamics,2004,33(4):485-498.
[4]WILSON J L.The cyclic behaviour of reinforced concrete chimney sections with and without openings[J].Advances in Structural Engineering,2009,12(3):411-420.
[5]朱世磊.考虑筒壁开洞后烟囱抗震性能分析[D].西安:西安建筑科技大学,2010.
ZHU Shilei.The seismic behavior of chimney after considering the chimney intake[D].Xi'an:Xi'an University of Architecture and Technology,2010.
[6]张小芳.开洞参数对钢筋混凝土烟囱整体和局部受力性能影响研究[D].北京:北京交通大学,2013.
ZHANG Xiaofang.Research on influence of opening parameters on integral and partial mechanical behavior of reinforced concrete chimneys[D].Beijing:Beijing Jiaotong University,2013.
[7]陈 刚,李飞舟.基于平截面假定的多开孔烟囱截面配筋验算方法[J].武汉大学学报(工学版),2012,45(增1):202-205.
CHEN Gang,LI Feizhou.Checking method of multi-hole chimney reinforcement section based on plane section assumption[J].Engineering Journal of Wuhan University,2012,45(S1):202-205.
[8]王思莹.钢筋混凝土烟囱设计计算方法的改进研究和地震倒塌分析[D].大连:大连理工大学,2017.
WANG Siying.Research on the design and calculation method of reinforced concrete chimney and the seismic collapse analysis[D].Dalian:Dalian University of Technology,2017.
[9]周长东,曾绪朗,陈 静,等.高耸钢筋混凝土烟囱抗地震倒塌能力分析[J].工程力学,2016,33(5):57-65.
ZHOU Changdong,ZENG Xulang,CHEN Jing,et al.Seismic collapse resistance analysis of tall reinforced concrete chimney[J].Engineering Mechanics,2016,33(5):57-65.
[10]周长东,曾绪朗,赵 锋,等.高耸钢筋混凝土烟囱结构地震易损性分析[J].地震工程与工程振动,2016,36(2):173-181.
ZHOU Changdong,ZENG Xulang,ZHAO Feng,et al.Seismic fragility analysis for high-rise reinforced concrete chimney[J].Earthquake Engineering and Engineering Dynamics,2016,36(2):173-181.
[11]周长东,田苗旺,张 许,等.考虑多维地震作用的高耸钢筋混凝土烟囱结构易损性分析[J].土木工程学报,2017,50(3):54-64.
ZHOU Changdong,TIAN Miaowang,ZHANG Xu,et al.Seismic fragility analysis for high-rise RC chimney considering multi-dimensional seismic actions[J].China Civil Engineering Journal,2017,50(3):54-64.
[12]周长东,田苗旺,王朋国,等.考虑地震方向性的高耸RC烟囱结构易损性分析[J].湖南大学学报(自然科学版),2017,44(11):11-22.
ZHOU Changdong,TIAN Miaowang,WANG Pengguo,et al.Analysis on structural fragility of a high-rise RC chimney considering ground motion directionality[J].Journal of Hunan University(Natural Sciences),2017,44(11):11-22.
[13]ZHOU C D,TIAN M W,GUO K P.Seismic partitioned fragility analysis for high-rise RC chimney considering multidimensional ground motion[J].The Structural Design of Tall and Special Buildings,2019,2019,28:e1568.
[14]赵招卿.风荷载作用下开孔烟囱受力性能研究[D].西安:西安建筑科技大学,2018.
ZHAO Zhaoqing.Study on the force performance of open hole chimney under wind load[D].Xi'an:Xi'an University of Architecture and Technology,2018.
[15]孙一飞,刘庆宽,马文勇,等.超高烟囱的风荷载试验研究[J].工程力学,2020,37(增1):270-274.
SUN Yifei,LIU Qingkuan,MA Wenyong,et al.The wind load of super high chimneys[J].Engineering Mechanics,2020,37(S1):270-274.
[16]朱留卫.不同开孔形式钢筋混凝土烟囱受力性能研究[D].西安:西安建筑科技大学,2019.
ZHU Liuwei.Research of mechanical behavior of reinforced concrete chimneys with different openings[D].Xi'an:Xi'an University of Architecture and Technology,2019.
[17]俞梦乔.钢筋混凝土烟囱多孔洞交叠影响的研究[D].成都:西南交通大学,2014.
YU Mengqiao.Study on overlapping influence between openings of reinforced concrete chimney[D].Chengdu:Southwest Jiaotong University,2014.
[18]朱 彤,周 晶,林 皋,等.烟囱模型动力试验研究[J].世界地震工程,2007,23(3):113-119.
ZHU Tong,ZHOU Jing,LIN Gao,et al.Research on dynamic structural model tests of chimneys[J].World Earthquake Engineering,2007,23(3):113-119.
[19]徐礼华,邹万山.框-筒结构模型模态试验研究与有限元分析[J].武汉大学学报(工学版),2005,38(5):76-79,87.
XU Lihua,ZOU Wanshan.Model experimental research and finite element analysis of frame-corewall structure[J].Engineering Journal of Wuhan University,2005,38(5):76-79,87.
[20]石启印,李爱群,李培彬,等.北京机场新塔台结构风洞试验研究[J].土木工程学报,2004,37(8):28-32,97.
SHI Qiyin,LI Aiqun,LI Peibin,et al.Wind tunnel tests study on the new tall tower structure model of Beijing airport[J].China Civil Engineering Journal,2004,37(8):28-32,97.
[21]王 磊,王泽康,张振华,等.超高层建筑多种风洞试验方式对比研究[J].实验力学,2018,33(4):534-542.
WANG Lei,WANG Zekang,ZHANG Zhenhua,et al.Comparative study of various wind tunnel experimental methods for super high-rise building[J].Journal of Experimental Mechanics,2018,33(4):534-542.
[22]王洪欣,马镇炎,王锦文,等.某斜柱框架-核心筒结构楼板受力分析[J].建筑结构,2018,48(1):9-13,25.WANG Hongxin,MA Zhenyan,WANG Jinwen,et al.Stress analysis of floors in a frame-corewall structure with inclined columns[J].Building Structure,2018,48(1):9-13,25.
[23]李 钢,吕志超,余丁浩.隔离非线性分层壳有限单元法[J].工程力学,2020,37(3):18-27.
LI Gang,LÜ Zhichao,YU Dinghao.The finite element model for inelasticity-separated multi-layer shell[J].Engineering Mechanics,2020,37(3):18-27.
[24]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
Code for design of concrete structures:GB 50010—2010[S].Beijing:China Architecture & Building Press,2011.
[25]聂建国,王宇航.ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J].工程力学,2013,30(4):59-67,82.
NIE Jianguo,WANG Yuhang.Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J].Engineering Mechanics,2013,30(4):59-67,82.

相似文献/References:

[1]张永健,王达,黄平明.斜拉桥Π 形主梁剪力滞影响因素分析[J].建筑科学与工程学报,2008,25(01):116.
 ZHANG Yong-jian,WANG Da,HUANG Ping-ming.Effect Factor Analysis of Shear Lag of Cable-stayedBridge with П-shaped Main Girder[J].Journal of Architecture and Civil Engineering,2008,25(01):116.
[2]李瞡,韩大建.索膜结构风振响应的神经网络辅助参数分析方法[J].建筑科学与工程学报,2008,25(04):98.
 LI Jing,HAN Da-jian.Neural Network Aided Parametric Analysis Method of Wind-induced Response for Cable-membrane Structures[J].Journal of Architecture and Civil Engineering,2008,25(01):98.
[3]周绪红,李艳敏,石宇,等.竖向荷载作用下冷弯薄壁型钢墙架柱的承载力[J].建筑科学与工程学报,2006,23(03):7.
 ZHOU Xu-hong,LI Yan-min,SHI Yu,et al.Bearing Capacity of Cold-Formed Thin-WalledSteel Wall Stud Under Vertical Load[J].Journal of Architecture and Civil Engineering,2006,23(01):7.
[4]王元清,张俊光,张 颖,等.铝合金网壳结构盘式节点整体刚度与变形性能的 参数分析[J].建筑科学与工程学报,2019,36(03):16.
 WANG Yuan-qing,ZHANG Jun-guang,ZHANG Ying,et al.Parameter Analysis on Overall Stiffness and Deformation Performance of TEMCOR Joints in Aluminum Alloy Shell Structures[J].Journal of Architecture and Civil Engineering,2019,36(01):16.
[5]黄福云,陈汉伦,杨芳芳,等.超高性能混凝土板受弯承载能力及计算方法试验研究[J].建筑科学与工程学报,2019,36(03):28.
 HUANG Fu-yun,CHEN Han-lun,YANG Fang-fang,et al.Experimental Study on Bending Capacity and Calculation Method of Ultra-high Performance Concrete Slab[J].Journal of Architecture and Civil Engineering,2019,36(01):28.
[6]孙瑛志,李国强,孙飞飞.双阶屈服屈曲约束支撑框架小震参数分析[J].建筑科学与工程学报,2019,36(06):88.
 SUN Ying-zhi,LI Guo-qiang,SUN Fei-fei.Parametric Analysis of Frames with Two-level-yielding Buckling Restrained Braces Under Frequent Earthquake[J].Journal of Architecture and Civil Engineering,2019,36(01):88.
[7]周德源,刘长勋.车辆撞击作用下RC桥墩动力响应[J].建筑科学与工程学报,2020,37(02):11.[doi:10.19815/j.jace.2019.04028]
 ZHOU De-yuan,LIU Chang-xun.Dynamic Response of RC Bridge Pier Under Vehicle Impact Load[J].Journal of Architecture and Civil Engineering,2020,37(01):11.[doi:10.19815/j.jace.2019.04028]
[8]李 钢,张天昊,董志骞.长耗能梁-偏心支撑机制对中心支撑钢框架结构抗震性能的影响[J].建筑科学与工程学报,2020,37(03):10.[doi:10.19815/j.jace.2019.05058]
 LI Gang,ZHANG Tian-hao,DONG Zhi-qian.Effect of Long-link EBF Mechanism on Seismic Performance of Steel CBF[J].Journal of Architecture and Civil Engineering,2020,37(01):10.[doi:10.19815/j.jace.2019.05058]
[9]郑 宏,徐笑东,王 玮,等.装配式交叉密肋钢板剪力墙参数影响分析[J].建筑科学与工程学报,2020,37(04):52.[doi:10.19815/j.jace.2019.07057]
 ZHENG Hong,XU Xiao-dong,WANG Wei,et al.Analysis on Influence Factors of Assembled Cross-ribbed Steel Plate Shear Wall[J].Journal of Architecture and Civil Engineering,2020,37(01):52.[doi:10.19815/j.jace.2019.07057]
[10]罗小烨,陈宝春,黄福云,等.不同类型桩基支撑的整体桥力学性能[J].建筑科学与工程学报,2020,37(05):151.[doi:10.19815/j.jace.2019.12002]
 LUO Xiao-ye,CHEN Bao-chun,HUANG Fu-yun,et al.Mechanical Property of Integral Bridge Supported by Different Types of Pile Foundations[J].Journal of Architecture and Civil Engineering,2020,37(01):151.[doi:10.19815/j.jace.2019.12002]

备注/Memo

备注/Memo:
收稿日期:2023-03-30
基金项目:辽宁省“兴辽英才计划”项目(XLYC1902043)
通信作者:董志骞(1989-),男,工学博士,副教授,E-mail:zqdong@dlut.edu.cn。
更新日期/Last Update: 2024-01-25