|本期目录/Table of Contents|

[1]陈徐东,石振祥,张忠诚,等.基于GMM的湿筛混凝土轴拉损伤演化机制研究[J].建筑科学与工程学报,2024,41(03):1-9.[doi:10.19815/j.jace.2022.06019]
 CHEN Xudong,SHI Zhenxiang,ZHANG Zhongcheng,et al.Study on axial tensile damage evolution mechanism of wet-screened concrete based on GMM[J].Journal of Architecture and Civil Engineering,2024,41(03):1-9.[doi:10.19815/j.jace.2022.06019]
点击复制

基于GMM的湿筛混凝土轴拉损伤演化机制研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年03期
页码:
1-9
栏目:
建筑材料
出版日期:
2024-05-20

文章信息/Info

Title:
Study on axial tensile damage evolution mechanism of wet-screened concrete based on GMM
文章编号:
1673-2049(2024)03-0001-09
作者:
陈徐东1,石振祥1,张忠诚1,宁英杰2,白丽辉2
(1. 河海大学 土木与交通学院,江苏 南京 210098; 2. 浙江交工集团股份有限公司,浙江 杭州 310051)
Author(s):
CHEN Xudong1, SHI Zhenxiang1, ZHANG Zhongcheng1, NING yingjie2, BAI Lihui2
(1. College of Civil Engineering and Transportation, Hohai University, Nanjing 210098, Jiangsu, China; 2. Zhejiang Communications Construction Group Co., Ltd., Hangzhou 310051, Zhejiang, China)
关键词:
湿筛混凝土 损伤识别 高斯混合模型 声发射 单轴拉伸
Keywords:
wet-screened concrete damage identification Gaussian mixture model acoustic emission uniaxial tension
分类号:
TU528
DOI:
10.19815/j.jace.2022.06019
文献标志码:
A
摘要:
为研究不同加载阶段下的二级配湿筛混凝土开裂模式与损伤演化过程,将声发射技术(AE)与高斯混合模型(GMM)进行结合作为损伤识别手段,以3种加载速率(1×10-6、5×10-6、25×10-6 s-1)作为试验变量,对二级配湿筛混凝土开展单轴拉伸损伤时空演化机制试验研究。结果表明:随着加载速率增大,湿筛混凝土试件内部裂缝开展更加密集,并且裂缝种类随机性更高; 利用GMM法对声发射数据进行处理分类结果显示,拉伸裂缝为试验加载过程的主要开裂模式,加载速率升高会导致剪切裂缝占比增大; 随着加载速率增大,拉伸裂缝频率分布明显扩大,而剪切裂缝与混合裂缝频率分布基本不变; 随着加载进行,拉伸裂缝与剪切裂缝概率密度区域均向AF轴趋近; GMM法所得裂缝开裂模式有拉伸裂缝、剪切裂缝与混合裂缝3种类别,并且随着加载进行,混合断裂区所处位置也会发生变化; 相较于常规裂缝模式分类方法,GMM法提供了更好的裂缝分类近似值分析,对裂缝开裂模式表述更加可靠。
Abstract:
In order to study the cracking mode and damage evolution process of two-stage wet-screened concrete under different loading stages, acoustic emission(AE)and Gaussian mixture model(GMM)were used as damage identification methods. Three loading rates(1×10-6, 5×10-6, 25×10-6 s-1)were used as test variables to carry out the experimental study on the spatiotemporal evolution mechanism of uniaxial tensile damage of two-stage wet-screened concrete. The results show that with the increase of loading rate, the internal crack development of wet-screened concrete specimens is more intensive, and the randomness of crack types is higher. After the GMM method being used to process and classify the acoustic emission data, the tensile cracks are the main cracking mode in the test loading process, and the increase of loading rate will lead to the increase of shear cracks. With the increase of loading rate, the frequency distribution of tensile cracks is significantly expanded, while the frequency distribution of shear cracks and mixed cracks is basically unchanged. With the loading process, the probability density regions of tensile cracks and shear cracks tend to the AF axis. The crack mode obtained by GMM method includes the following three categories: tensile crack, shear crack and mixed crack. With the loading process, the location of mixed fracture zone will also change. Compared with the conventional crack pattern classification method, GMM method provides better approximate value analysis of crack classification and more reliable expression of crack cracking pattern.

参考文献/References:

[1] 米正祥,胡 昱,李庆斌.大坝混凝土断裂强度及其确定方法[J].水力发电学报,2019,38(6):19-28.
MI Zhengxiang,HU Yu,LI Qingbin.Fracture strength of dam concrete and its determination method[J].Journal of Hydroelectric Engineering,2019,38(6):19-28.
[2]SHEN L,WANG L C,SONG Y P,et al.Comparison between dynamic mechanical properties of dam and sieved concrete under biaxial tension-compression[J].Construction and Building Materials,2017,132:43-50.
[3]石 妍,刘战鳌,周世华,等.锈染骨料对湿筛与全级配大坝混凝土力学性能的影响对比[J].长江科学院院报,2021,38(12):146-151.
SHI Yan,LIU Zhan'ao,ZHOU Shihua,et al.Influence of rusty aggregate on mechanical properties of wet-screened and fully-graded dam concretes[J].Journal of Yangtze River Scientific Research Institute,2021,38(12):146-151.
[4]SERRA C,BATISTA A L,AZEVEDO N M,et al.Prediction of dam concrete compressive and splitting tensile strength based on wet-screened concrete test results[J].Journal of Materials in Civil Engineering,2017,29(10):04017188.
[5]PREM P R,MURTHY A R.Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending[J].Applied Acoustics,2017,117:28-38.
[6]MOHAN A R,POOBAL S.Crack detection using image processing:a critical review and analysis[J].Alexandria Engineering Journal,2018,57(2):787-798.
[7]王 伟,汪 涛,熊德发,等.三轴循环加卸载下砂岩声发射分形特征试验[J].工程科学与技术,2022,54(2):90-100.
WANG Wei,WANG Tao,XIONG Defa,et al.Experiment of fractal characteristics of acoustic emission of sandstone under triaxial cyclic loading and unloading[J].Advanced Engineering Sciences,2022,54(2):90-100.
[8]郁董凯,石启印,杨 帆.基于声发射和BP神经网络的预应力钢筋砼梁损伤过程分析[J].防灾减灾工程学报,2016,36(6):927-935.
YU Dongkai,SHI Qiyin,YANG Fan.Prestressed concrete beam damage process based on acoustic emission and BP neural network analysis[J].Journal of Disaster Prevention and Mitigation Engineering,2016,36(6):927-935.
[9]徐秀丽,张 勇,李雪红,等.基于声发射和深度置信网络的钢筋混凝土梁损伤识别方法研究[J].建筑结构学报,2018,39(增2):400-407.
XU Xiuli,ZHANG Yong,LI Xuehong,et al.Research on damage identification method of reinforced concrete beams based on acoustic emission and depth confidence network[J].Journal of Building Structures,2018,39(S2):400-407.
[10]刘 鑫,杨鼎宜,刘 廉,等.温度-恒载耦合作用下钢纤维混凝土损伤时变规律及其声发射响应[J].建筑材料学报,2019,22(1):24-30.
LIU Xin,YANG Dingyi,LIU Lian,et al.Time-varying law and acoustic emission response of steel fiber reinforced concrete under temperature-constant load coupling action[J].Journal of Building Materials,2019,22(1):24-30.
[11]DAS A K,SUTHAR D,LEUNG C K Y.Machine learning based crack mode classification from unlabeled acoustic emission waveform features[J].Cement and Concrete Research,2019,121:42-57.
[12]郑 泓,段忠东.考虑非线性环境因素影响的结构损伤预警方法研究[J].振动工程学报,2021,34(6):1101-1111.
ZHENG Hong,DUAN Zhongdong.Structural damage alert with consideration of the nonlinear environmental effects[J].Journal of Vibration Engineering,2021,34(6):1101-1111.
[13]宋玉普,段小亮,施林林.大骨料混凝土在动态三轴拉压压应力状态下的强度[J].建筑材料学报,2015,18(5):721-726.
SONG Yupu,DUAN Xiaoliang,SHI Linlin.Strength of large aggregate concrete under dynamic triaxial compression-compression-tension stress state[J].Journal of Building Materials,2015,18(5):721-726.
[14]卜静武,徐慧颖,羌宇杰,等.橡胶混凝土轴拉破坏过程中声发射特性[J].建筑科学与工程学报,2022,39(2):78-86.
BU Jingwu,XU Huiying,QIANG Yujie,et al.Acoustic emission characteristics of rubber concrete in axial tension process[J].Journal of Architecture and Civil Engineering,2022,39(2):78-86.
[15]DAS A K,LAI T T,CHAN C W,et al.A new non-linear framework for localization of acoustic sources[J].Structural Health Monitoring,2019,18(2):590-601.
[16]王桂林,王润秋,孙 帆,等.单轴压缩下溶隙灰岩声发射RA-AF特征及破裂模式研究[J].中国公路学报,2022,35(8):118-128.
WANG Guilin,WANG Runqiu,SUN Fan,et al.RA-AF characteristics of acoustic emission and failure mode of karst-fissure limestone under uniaxial compression[J].China Journal of Highway and Transport,2022,35(8):118-128.
[17]周逸飞,朱 星,刘文德.基于声发射和高斯混合模型的灰岩破裂特征识别研究[J].水利水电技术,2019,50(11):131-140.
ZHOU Yifei,ZHU Xing,LIU Wende.Identification of cracking characteristics of limestone under uniaxial compression condition using acoustic emission and GMM[J].Water Resources and Hydropower Engineering,2019,50(11):131-140.
[18]FARHIDZADEH A,SALAMONE S,SINGLA P.A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures[J].Journal of Intelligent Material Systems and Structures,2013,24(14):1722-1735.
[19]王 刚,宋磊博,刘夕奇,等.非贯通节理花岗岩剪切断裂力学特性及声发射特征研究[J].岩土力学,2022,43(6):1533-1545.
WANG Gang,SONG Leibo,LIU Xiqi,et al.Shear fracture mechanical properties and acoustic emission characteristics of discontinuous jointed granite[J].Rock and Soil Mechanics,2022,43(6):1533-1545.

相似文献/References:

[1]管德清,施立成.基于曲率模态小波分析的单塔斜拉桥损伤识别[J].建筑科学与工程学报,2010,27(01):21.
 GUAN De-qing,SHI Li-cheng.Damage Identification of Single Tower Cable-stayed Bridge Based on Wavelet Analysis of Curvature Mode[J].Journal of Architecture and Civil Engineering,2010,27(03):21.
[2]顾建祖,郝文峰,骆英,等.基于固有模态函数振动传递率的结构损伤识别[J].建筑科学与工程学报,2011,28(01):27.
 GU Jian-zu,HAO Wen-feng,LUO Ying,et al.Structural Damage Identification Based on Intrinsic Mode Function Vibration Transmissibility[J].Journal of Architecture and Civil Engineering,2011,28(03):27.
[3]王艺霖,刘西拉,方从启.基于应变指标的桥梁损伤识别方法[J].建筑科学与工程学报,2011,28(02):62.
 WANG Yi-lin,LIU Xi-la,FANG Cong-qi.Bridge Damage Detection Method Based on Strain Index[J].Journal of Architecture and Civil Engineering,2011,28(03):62.
[4]常军.基于曲率模态的钢筋混凝土梁多点损伤位置识别[J].建筑科学与工程学报,2006,23(04):24.
 CHANG Jun.Curvature Model Based Many Damage Locations Identification of Reinforced Concrete Beam[J].Journal of Architecture and Civil Engineering,2006,23(03):24.
[5]刘 晖,朱胜男,申韶丁,等.焊接空间结构节点焊缝拉裂损伤识别[J].建筑科学与工程学报,2019,36(04):40.
 LIU Hui,ZHU Sheng-nan,SHEN Shao-ding,et al.Identification for Weld Crack Damage of Spatial Structural Welded Joints[J].Journal of Architecture and Civil Engineering,2019,36(03):40.

备注/Memo

备注/Memo:
收稿日期:2023-06-07
基金项目:国家重点研发计划项目(2021YFB2600200); 国家自然科学基金项目(51979090); 国家重点实验室开放基金项目(2019CEM002)
作者简介:陈徐东(1985-),男,工学博士,教授,博士生导师,E-mail:cxdong1985@163.com。
更新日期/Last Update: 2024-05-20