|本期目录/Table of Contents|

[1]王海英,李子彤,张英治,等.基于拌和生产数据的BP神经网络混凝土抗压强度预测[J].建筑科学与工程学报,2024,41(03):18-25.[doi:10.19815/j.jace.2023.12082]
 WANG Haiying,LI Zitong,ZHANG Yingzhi,et al.BP neural network prediction of concrete compressive strength based on mixing production data[J].Journal of Architecture and Civil Engineering,2024,41(03):18-25.[doi:10.19815/j.jace.2023.12082]
点击复制

基于拌和生产数据的BP神经网络混凝土抗压强度预测(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年03期
页码:
18-25
栏目:
建筑材料
出版日期:
2024-05-20

文章信息/Info

Title:
BP neural network prediction of concrete compressive strength based on mixing production data
文章编号:
1673-2049(2024)03-0018-08
作者:
王海英1,李子彤1,张英治2,王晨光1
(1. 长安大学 工程机械学院,陕西 西安 710064; 2.陕西交通控股集团有限公司,陕西 西安 710075)
Author(s):
WANG Haiying1, LI Zitong1, ZHANG Yingzhi2, WANG Chenguang1
(1. School of Construction Machinery, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Shaanxi Transportation Holding Group Co., Ltd., Xi'an 710075, Shaanxi, China)
关键词:
混凝土 预测模型 BP神经网络 抗压强度 拌和生产监控数据
Keywords:
concrete prediction model BP neural network compressive strength production monitoring data
分类号:
U415.12
DOI:
10.19815/j.jace.2023.12082
文献标志码:
A
摘要:
为解决混凝土生产中抗压强度试验周期长及工程管理存在滞后性的问题,提出了一种基于混凝土拌和生产实时监控数据的BP神经网络混凝土抗压强度预测模型。以混凝土拌和生产中的8项物料生产称重数据和5项生产配比数据作为预测输入变量,建立200组混凝土拌和站生产监控数据和对应的抗压强度试验数据样本集,按照6:2:2比例划分为训练集、验证集和测试集; 分别以C40配比混凝土拌和生产的8项物料称重数据和全部13项数据作为输入变量,进行混凝土28 d抗压强度预测,将预测结果与实际试验结果进行比较,验证所提出BP神经网络模型的预测效果。结果表明:所提出的BP神经网络混凝土强度预测模型能较好地实时预测混凝土28 d抗压强度,且相对误差优于利用7 d抗压强度试验数据估算值; 8项物料称重数据作为输入变量的BP神经网络预测模型预测精度更好,平均绝对百分比误差为0.82%,均方根误差为0.52 MPa; 利用不同拌和站C20配比、C30配比混凝土拌和生产监控数据对8项输入变量BP神经网络混凝土抗压强度预测模型进行适应性验证可知,其预测平均绝对误差均在0.5 MPa之内,平均绝对百分比误差均小于2%,与C40配比预测误差一致; 该预测模型充分挖掘了混凝土拌和站生产实时监控数据的价值,实现了传统混凝土抗压试验结果提前化,对提高工程建设质量水平具有重要意义。
Abstract:
In order to solve the problems of long testing period and lagging of project management in concrete production, a BP neural network model for predicting concrete compressive strength based on real-time monitoring data of concrete mixing production was proposed. Taking the 8 items of material production weighing data and 5 items of production mixing ratio data in concrete mixing production as input variables, 200 sets of production monitoring data and test data sample sets were established, which were divided into training set, verification set, and test set according to the ratio of 6:2:2. The 8 items of material weighing data and all 13 items of data of C40 ratio concrete mixing and production were used as input variables for 28 d compressive strength prediction of concrete, and the predicted results were compared with the actual test results to verify the effectiveness of the proposed BP neural network prediction model. The results show that the proposed BP neural network concrete strength prediction model can effectively predict the 28 d compressive strength of concrete in real time, and the prediction relative error is better than the estimated value using 7 d compressive strength test data. The BP neural network prediction model with 8 items of material weighing data as input variables has better prediction accuracy, with a mean absolute percentage error of 0.82% and a root mean square error of 0.52 MPa. Furthermore, the adaptability of the BP neural network concrete compressive strength prediction model with 8 items of input variables is verified using production monitoring data of C20 and C30 ratios from different mixing stations, and the prediction mean absolute errors are within 0.5 MPa, and the average absolute percentage errors are less than 2%, consistent with the prediction errors of C40 ratio. The prediction model fully explores the value of real-time monitoring data of concrete mixing station production, realizes the advance of the traditional concrete compressive test results, and has important practical significance for improving the quality level of engineering construction.

参考文献/References:

[1] 白国良,刘瀚卿,朱可凡,等.陕北矿区不同矿源煤矸石混凝土抗压强度试验研究[J].土木工程学报,2023,56(4):30-40.
BAI Guoliang,LIU Hanqing,ZHU Kefan,et al.Experimental study on compressive strength of coal gangue concrete from different ore sources in Northern Shaanxi mining area[J].China Civil Engineering Journal,2023,56(4):30-40.
[2]NASER A H,BADR A H,HENEDY S N,et al.Application of multivariate adaptive regression splines(MARS)approach in prediction of compressive strength of eco-friendly concrete[J].Case Studies in Construction Materials,2022,17:e01262.
[3]薛国斌,胡安龙,魏 勇,等.基于代价敏感系数的混凝土抗压强度预测[J].西安理工大学学报,2022,38(4):588-593.
XUE Guobin,HU Anlong,WEI Yong,et al.Compressive strength prediction of concrete based on the cost-sensitive coefficients[J].Journal of Xi'an University of Technology,2022,38(4):588-593.
[4]陈洪根,龙蔚莹,李 昕,等.基于BP神经网络的粉煤灰混凝土抗压强度预测研究[J].建筑结构,2021,51(增2):1041-1045.
CHEN Honggen,LONG Weiying,LI Xin,et al.Prediction of compressive strength of fly ash concrete based on BP neural network[J].Building Structure,2021,51(S2):1041-1045.
[5]林 军,杨 斌,陈雁萍.基于FLR和ANFIS方法预测混凝土抗压强度研究[J].混凝土,2022(5):11-15.
LIN Jun,YANG Bin,CHEN Yanping.Comparison study of predicting concrete compressive strength by FLR and ANFIS method[J].Concrete,2022(5):11-15.
[6]吴贤国,刘鹏程,陈虹宇,等.基于随机森林的高性能混凝土抗压强度预测[J].混凝土,2022(1):17-20,24.
WU Xianguo,LIU Pengcheng,CHEN Hongyu,et al.Characteristic screening and prediction of high-performance concrete compressive strength based on random forest method[J].Concrete,2022(1):17-20,24.
[7]ZENG Z Y,ZHU Z Y,YAO W,et al.Accurate prediction of concrete compressive strength based on explainable features using deep learning[J].Construction and Building Materials,2022,329:127082.
[8]ZHU L H,ZHAO C,DAI J.Prediction of compressive strength of recycled aggregate concrete based on gray correlation analysis[J].Construction and Building Materials,2021,273:121750.
[9]陈 庆,马 瑞,蒋正武,等.基于GA-BP神经网络的UHPC抗压强度预测与配合比设计[J].建筑材料学报,2020,23(1):176-183,191.
CHEN Qing,MA Rui,JIANG Zhengwu,et al.Compressive strength prediction and mix proportion design of UHPC based on GA-BP neural network[J].Journal of Building Materials,2020,23(1):176-183,191.
[10]WANG R L,DAI Y M,HAN C C,et al.Application of DPO-BP in strength prediction of concrete[C]//ITOEC.Proceedings of 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference.Chongqing:IEEE,2017:1003-1006.
[11]焦楚杰,谭思琪,崔力仕,等.基于神经网络的植生型多孔混凝土抗压强度预测模型[J].混凝土,2022(1):7-10,16.
JIAO Chujie,TAN Siqi,CUI Lishi,et al.Prediction model of compressive strength of plant porous concrete based on neural network[J].Concrete,2022(1):7-10,16.
[12]TU J S,LIU Y Z,ZHOU M,et al.Prediction and analysis of compressive strength of recycled aggregate thermal insulation concrete based on GA-BP optimization network[J].Journal of Engineering,Design and Technology,2021,19(2):412-422.
[13]FENG D C,LIU Z T,WANG X D,et al.Machine learning-based compressive strength prediction for concrete:an adaptive boosting approach[J].Construction and Building Materials,2020,230:117000.
[14]AL-JAMIMI H A,AL-KUTTI W A,ALWAHAISHI S,et al.Prediction of compressive strength in plain and blended cement concretes using a hybrid artificial intelligence model[J].Case Studies in Construction Materials,2022,17:e01238.
[15]MA S X,SHI X X,YU C L,et al.Research on improved BP neural network gangue powder concrete compressive strength prediction model[C]//ITAIC.Proceedings of 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference.Chongqing:IEEE,2020:419-423.
[16]许开成,毕丽苹,陈梦成.基于SPSS回归分析的锂渣混凝土抗压强度预测模型[J].建筑科学与工程学报,2017,34(1):15-24.
XU Kaicheng,BI Liping,CHEN Mengcheng.Prediction model of compressive strength of lithium slag concrete based on SPSS regression analysis[J].Journal of Architecture and Civil Engineering,2017,34(1):15-24.
[17]JOVIC S,BABIC L,MISKOVIC A,et al.Ranking of the most influential parameters for compressive strength of no-slump concrete prediction by neuro-fuzzy logic[J].Structural Concrete,2021,22(2):1-6.
[18]CUI X N,WANG Q C,ZHANG R L,et al.Machine learning prediction of concrete compressive strength with data enhancement[J].Journal of Intelligent & Fuzzy Systems,2021,41(6):7219-7228.

相似文献/References:

[1]单炜,张绍逸.BFRP筋与混凝土的粘结-滑移本构关系[J].建筑科学与工程学报,2013,30(02):15.
 SHAN Wei,ZHANG Shao-yi.[J].Journal of Architecture and Civil Engineering,2013,30(03):15.
[2]马志鸣,赵铁军,巴光忠,等.冻融环境下引气混凝土的抗钢筋锈蚀能力研究[J].建筑科学与工程学报,2014,31(03):85.
 MA Zhi-ming,ZHAO Tie-jun,BA Guang-zhong,et al.Study on Ability of Resistance to Steel Corrosion of Air Entraining Concrete Under Freezethaw Environment[J].Journal of Architecture and Civil Engineering,2014,31(03):85.
[3]李苹,任晓丹,李 杰.基于隐式梯度理论的混凝土细观随机断裂模型[J].建筑科学与工程学报,2014,31(03):90.
 LI Ping,REN Xiao-dan,LI Jie.Meso Stochastic Fracture Model for Concrete Based on Implicit Gradient Theory[J].Journal of Architecture and Civil Engineering,2014,31(03):90.
[4]翟 越,赵均海,艾晓芹,等.基于统一强度理论的巴西圆盘劈裂强度分析[J].建筑科学与工程学报,2015,32(03):46.
 ZHAI Yue,ZHAO Jun-hai,AI Xiao-qin,et al.Analysis on Splitting Strength of Brazilian Disc Based on Unified Strength Theory[J].Journal of Architecture and Civil Engineering,2015,32(03):46.
[5]王 钧,任靖豪,郭大鹏.短切玄武岩纤维混凝土基本力学性能的尺寸效应[J].建筑科学与工程学报,2015,32(05):96.
 WANG Jun,REN Jing-hao,GUO Da-peng.Size Effect of Basic Mechanical Properties of Chopped Basalt Fiber Reinforced Concrete[J].Journal of Architecture and Civil Engineering,2015,32(03):96.
[6]吴方伯,张 航,李 钧,等.不同箱体形式混凝土密肋空心楼盖受力性能试验[J].建筑科学与工程学报,2016,33(02):7.
 WU Fang-bo,ZHANG Hang,LI Jun,et al.Experiment on Mechanical Behavior of Concrete Hollow-ribbed Floor with Different Box[J].Journal of Architecture and Civil Engineering,2016,33(03):7.
[7]孙 昊,李继超,甘 丹.肋间距超限钢筋与混凝土间粘结强度试验[J].建筑科学与工程学报,2016,33(02):107.
 SUN Hao,LI Ji-chao,GAN Dan.Experiment on Bond Strength Between Steel and Concrete with Overrun Rib Spacing[J].Journal of Architecture and Civil Engineering,2016,33(03):107.
[8]乔宏霞,路承功,李 宇,等.宁夏盐渍土地区现场暴露混凝土耐久性损伤评价试验[J].建筑科学与工程学报,2016,33(06):44.
 QIAO Hong-xia,LU Cheng-gong,LI Yu,et al.Experiment on Durability Damage Assessment of Concrete Field Exposed in Saline Soil Area of Ningxia[J].Journal of Architecture and Civil Engineering,2016,33(03):44.
[9]肖 杰,屈文俊,朱 鹏.不同粗细骨料组合下的混凝土耐硫酸腐蚀研究[J].建筑科学与工程学报,2016,33(06):81.
 XIAO Jie,QU Wen-jun,ZHU Peng.Research on Concrete Sulfuric Acid Resistance with Different Types of Coarse and Fine Aggregates[J].Journal of Architecture and Civil Engineering,2016,33(03):81.
[10]刘汉昆,孙超,李杰.基于CT扫描的混凝土三维细观数值模拟[J].建筑科学与工程学报,2010,27(01):54.
 LIU Han-kun,SUN Chao,LI Jie.Three-demensional Mesoscopic Numerical Simulation of Concrete Based on CT Scan[J].Journal of Architecture and Civil Engineering,2010,27(03):54.

备注/Memo

备注/Memo:
收稿日期:2023-12-19
基金项目:陕西省交通运输厅科技项目(18-33X,21-04X)
作者简介:王海英(1971-),女,工学博士,副教授,E-mail:whying@chd.edu.cn。
更新日期/Last Update: 2024-05-20