|本期目录/Table of Contents|

[1]金伟良,刘振东,张 军.基于修正力磁模型的混凝土结构压磁疲劳模拟[J].建筑科学与工程学报,2024,41(04):1-9.[doi:10.19815/j.jace.2023.03071]
 JIN Weiliang,LIU Zhendong,ZHANG Jun.Piezomagnetic fatigue simulation of concrete structures based on modified magneto-mechanical model[J].Journal of Architecture and Civil Engineering,2024,41(04):1-9.[doi:10.19815/j.jace.2023.03071]
点击复制

基于修正力磁模型的混凝土结构压磁疲劳模拟(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年04期
页码:
1-9
栏目:
建筑结构
出版日期:
2024-07-19

文章信息/Info

Title:
Piezomagnetic fatigue simulation of concrete structures based on modified magneto-mechanical model
文章编号:
1673-2049(2024)04-0001-09
作者:
金伟良1,刘振东1,张 军2
(1. 浙江大学 结构工程研究所,浙江 杭州 310058; 2. 浙大宁波理工学院 土木建筑学院,浙江 宁波 315100)
Author(s):
JIN Weiliang1, LIU Zhendong1, ZHANG Jun2
(1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; 2. School of Civil Engineering and Architecture, Ningbo Technological University, Ningbo 315100, Zhejiang, China)
关键词:
混凝土结构 疲劳损伤 金属磁记忆 弹塑性力磁模型 数值模拟
Keywords:
concrete structure fatigue damage metal magnetic memory elastic-plastic magneto-mechanical model numerical simulation
分类号:
TU375
DOI:
10.19815/j.jace.2023.03071
文献标志码:
A
摘要:
为了通过混凝土梁内钢筋在力磁效应下的磁信号来定量分析混凝土梁的疲劳状态,整合几种力磁模型的优缺点和适用范围,提出了适用于铁磁性材料弹塑性阶段的力磁本构模型,并通过ANSYS定量模拟分析了混凝土梁在弹性和弹塑性阶段的磁化特征; 对混凝土结构在拟动力和疲劳加载过程中的力磁效应进行了有限元模拟,得到了测点处磁感应强度的时变曲线,并与试验和隐式微分模型所得结果进行对比。结果表明:修正后的力磁模型在弹性阶段的应用能够准确反映试验观察到的3个阶段变化规律,即梁开裂前的平直段、开裂后的迅速磁化段和加载后期的磁化饱和段; 该模型的磁场模拟结果还能反映箍筋、纵筋的相对位置和梁的受载情况; 在疲劳阶段,模拟结果与试验观察的规律一致,精度较高,并与试验结果在同一数量级; 该修正力磁模型不仅具有应力与磁学属性的直观映射关系,而且相较于隐式微分模型更易于应用,可作为力磁效应的定量化研究工具。
Abstract:
In order to quantitatively analyze the fatigue state of concrete beams by the magnetic signal of steel bars in concrete beams under the magneto-mechanical effect, the advantages, disadvantages and application scope of several magneto-mechanical models were integrated, and a magneto-mechanical constitutive model suitable for the elastoplastic stage of ferromagnetic materials was proposed. The magnetization characteristics of concrete beams in the elastic and elastoplastic stages were quantitatively simulated and analyzed by ANSYS. The magneto-mechanical effect of concrete structures during pseudo-dynamic and fatigue loading was simulated by finite element method, and the time-varying curve of magnetic induction intensity at the measuring point was obtained, which was compared with the results obtained by experiment and implicit differential model. The results show that the modified magneto-mechanical model accurately captures the observed three-stage variation pattern during the elastic phase, including a linear segment before beam cracking, a rapid magnetization stage post-cracking, and a saturation stage in the late loading period. Moreover, the magnetic field simulation results of this model can reflect the relative positions of stirrups, longitudinal bars, and the loading conditions of the beam. In the fatigue phase, the simulation results exhibit consistency with observed experimental patterns, demonstrating high precision and agreement with experimental results on the same scale. The modified magneto-mechanical model not only establishes an intuitive mapping relationship between stress and magnetic properties but also proves to be more user-friendly compared to the implicit differential model. Thus, the model can be used as a quantitative tool for investigating magneto-mechanical effects.

参考文献/References:

[1] DOUBOV A A.A study of metal properties using the method of magnetic memory[J].Metal Science and Heat Treatment,1997,39(9):401-405.
[2]金伟良,张 军.混凝土结构疲劳及其磁效应[M].杭州:浙江大学出版社,2022.
JIN Weiliang,ZHANG Jun.Fatigue of concrete structure and its magnetic effect[M].Hangzhou:Zhejiang University Press,2022.
[3]JILES D C.Theory of the magnetomechanical effect[J].Journal of Physics D:Applied Physics,1995,28(8):1537-1546.
[4]SABLIK M J,LANDGRAF F J G.Modeling microstructural effects on hysteresis loops with the same maximum flux density[J].IEEE Transactions on Magnetics,2003,39(5):2528-2530.
[5]XU M X,CHEN Z H,XU M Q,et al.Discussion of modified Jiles-Atherton model including dislocations and plastic strain[J].International Journal of Applied Electromagnetics and Mechanics,2015,47(1):61-73.
[6]ZHANG D W,HUANG W Q,ZHANG J,et al.Prediction of fatigue damage in ribbed steel bars under cyclic loading with a magneto-mechanical coupling model[J].Journal of Magnetism and Magnetic Materials,2021,530:167943.
[7]张大伟,黄文强.基于力磁模型的混凝土梁内钢筋疲劳损伤研究[C]//陆新征.第30届全国结构工程学术会议论文集(Ⅲ).北京:《工程力学》杂志社,2021:435-441.
ZHANG Dawei,HUANG Wenqiang.Research on fatigue damage of steel bars in concrete beams based on force-magnetic model[C]//LU Xinzheng.Proceedings of the 30th National Symposium on Structural Engineering(Ⅲ).Beijing:Engineering Mechanics Press,2021:435-441.
[8]MA X P,SU S Q,WANG W,et al.Damage location and numerical simulation for steel wire under torsion based on magnetic memory method[J].International Journal of Applied Electromagnetics and Mechanics,2019,60(2):223-246.
[9]DOUBOV A A.Screening of weld quality using the metal magnetic memory[J].Welding in the World,1998,41(3):196-199.
[10]DOUBOV A A.Diagnostics of equipment and constructions strength with usage of magnetic memory[J].Inspection Diagnostics,2001,6:19-29.
[11]苏三庆,秦彦龙,王 威,等.基于磁记忆的Q235b受弯钢梁力磁效应数值模拟[J].材料科学与工艺,2020,28(5):11-21.
SU Sanqing,QIN Yanlong,WANG Wei,et al.Numerical simulation of stress-magnetization effect for bending states of Q235b steel beam based on magnetic memory[J].Materials Science and Technology,2020,28(5):11-21.
[12]高志刚,苏三庆,王 威,等.带缺陷钢丝绳拉伸力-磁耦合数值模拟[J].西安科技大学学报,2019,39(4):626-633.
GAO Zhigang,SU Sanqing,WANG Wei,et al.Numerical simulation of force-magnetic coupling for the stretched steel wire rope with defects[J].Journal of Xi'an University of Science and Technology,2019,39(4):626-633.
[13]杨理践,吕 铮,高松巍.基于矫顽力特性的钢板应力检测技术[J].仪表技术与传感器,2016(11):31-34.
YANG Lijian,LYU Zheng,GAO Songwei.Steel plate stress testing technique based on coercivity characteristics[J].Instrument Technique and Sensor,2016(11):31-34.
[14]张 军.基于压磁效应的钢筋混凝土结构疲劳性能试验研究[D].杭州:浙江大学,2017.
ZHANG Jun.Experimental study on fatigue performance of reinforced concrete structures based on piezomagnetism effect[D].Hangzhou:Zhejiang University,2017.
[15]马惠香,周建庭,赵瑞强,等.基于金属磁记忆技术的钢筋应力无损检测试验[J].江苏大学学报(自然科学版),2018,39(3):349-354.
MA Huixiang,ZHOU Jianting,ZHAO Ruiqiang,et al.Non-destructive testing of steel bar stress based on metal magnetic memory technology[J].Journal of Jiangsu University(Natural Science Edition),2018,39(3):349-354.
[16]肖卫强.钢筋混凝土梁剪切疲劳性能试验研究[D].杭州:浙江大学,2018.
XIAO Weiqiang.Experimental study on shear fatigue properties of reinforced concrete beams[D].Hangzhou:Zhejiang University,2018.
[17]王 青,卫 军,刘晓春,等.钢筋混凝土梁疲劳累积损伤过程的等效静力分析方法[J].中南大学学报(自然科学版),2016,47(1):247-253.
WANG Qing,WEI Jun,LIU Xiaochun,et al.Equivalent static analysis method for fatigue cumulative damage process of reinforced concrete beam[J].Journal of Central South University(Science and Technology),2016,47(1):247-253.
[18]时朋朋.微磁检测应力和塑性区的磁弹塑耦合理论[J].力学学报,2021,53(12):3341-3353.
SHI Pengpeng.Theoretical model of magneto-elastoplastic coupling for micro-magnetic non-destructive testing method with stress concentration and plastic zone[J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(12):3341-3353.
[19]SHI P P,JIN K,ZHENG X J.A magnetomechanical model for the magnetic memory method[J]. International Journal of Mechanical Sciences,2017,124-125:229-241.
[20]李玮儒,彭启凤,杨进川,等.X65管线钢矫顽力与应力关系实验研究[J].世界石油工业,2022,29(1):70-75.
LI Weiru,PENG Qifeng,YANG Jinchuan,et al.Experiment of the relationship between coercive force and stress of X65 pipeline steel[J].World Petroleum Industry,2022,29(1):70-75.

相似文献/References:

[1]曹 杨,孙千伟,宫文军,等.新型装配式混凝土框架型钢节点试验[J].建筑科学与工程学报,2016,33(02):15.
 CAO Yang,SUN Qian-wei,GONG Wen-jun,et al.Experiment on New Section Steel Joints for Prefabricated Concrete Frame[J].Journal of Architecture and Civil Engineering,2016,33(04):15.
[2]陆春华,袁思奇.基于时变可靠度的锈蚀混凝土结构全寿命成本模型[J].建筑科学与工程学报,2017,34(02):71.
 LU Chun-hua,YUAN Si-qi.Life-cycle Cost Model of Corroded Concrete Structures Based on Time-varying Reliability[J].Journal of Architecture and Civil Engineering,2017,34(04):71.
[3]何化南,冯 叶,张冠华,等.考虑表面氯离子质量分数的沿海混凝土桥梁氯离子扩散修正模型[J].建筑科学与工程学报,2017,34(04):57.
 HE Hua-nan,FENG Ye,ZHANG Guan-hua,et al.Revised Chloride Ion Diffusion Models of Concrete Bridges Near Coastal Areas Considering Surface Chloride Ion Concentration[J].Journal of Architecture and Civil Engineering,2017,34(04):57.
[4]陈曦,梁剑青.混凝土结构周期比分析[J].建筑科学与工程学报,2009,26(03):117.
 CHEN Xi,LIANG Jian-qing.Analysis of Period Ratio of Concrete Structure[J].Journal of Architecture and Civil Engineering,2009,26(04):117.
[5]马昆林,谢友均,龙广成.氯盐环境下桥梁混凝土结构的腐蚀行为及破坏机理[J].建筑科学与工程学报,2008,25(03):32.
 MA Kun-lin,XIE You-jun,LONG Guang-cheng.Corrosion Behavior and Destructive Mechanism of Bridge Concrete Structure Under Chloride Salt Environment[J].Journal of Architecture and Civil Engineering,2008,25(04):32.
[6]肖建庄,陈立浩,叶建军,等.混凝土结构拆除技术与绿色化发展[J].建筑科学与工程学报,2019,36(05):1.
 XIAO Jian-zhuang,CHEN Li-hao,YE Jian-jun,et al.Technology and Green Development of Demolition for Concrete Structures[J].Journal of Architecture and Civil Engineering,2019,36(04):1.
[7]陈 琳,屈文俊,朱 鹏,等.混凝土结构等耐久性设计方法[J].建筑科学与工程学报,2020,37(02):81.[doi:10.19815/j.jace.2019.03059]
 CHEN Lin,QU Wen-jun,ZHU Peng,et al.Equal Durability Design Method for Concrete Structure[J].Journal of Architecture and Civil Engineering,2020,37(04):81.[doi:10.19815/j.jace.2019.03059]
[8]丁 威,马亥波,舒江鹏,等.基于残差网络的混凝土结构病害分类识别研究[J].建筑科学与工程学报,2022,39(04):127.[doi:10.19815/j.jace.2021.10112]
 DING Wei,MA Hai-bo,SHU Jiang-peng,et al.Research on Classification and Recognition of Concrete Structure Diseases Based on Residual Network[J].Journal of Architecture and Civil Engineering,2022,39(04):127.[doi:10.19815/j.jace.2021.10112]
[9]任 伟,李敬泉,李晓路.带翼缘截面混凝土受压区等效应力图系数研究[J].建筑科学与工程学报,2022,39(06):87.[doi:10.19815/j.jace.2021.09078]
 REN Wei,LI Jing-quan,LI Xiao-lu.Study on Equivalent Stress Diagram Coefficient of Concrete Compression Zone with Flange Section[J].Journal of Architecture and Civil Engineering,2022,39(04):87.[doi:10.19815/j.jace.2021.09078]
[10]周金枝,吴 学,钟楚珩,等.玄武岩纤维再生混凝土循环加载变形与疲劳寿命预测[J].建筑科学与工程学报,2023,40(06):1.[doi:10.19815/j.jace.2022.05088]
 ZHOU Jinzhi,WU Xue,ZHONG Chuheng,et al.Cyclic loading deformation and fatigue life prediction of basalt fiber recycled aggregate concrete[J].Journal of Architecture and Civil Engineering,2023,40(04):1.[doi:10.19815/j.jace.2022.05088]

备注/Memo

备注/Memo:
收稿日期:2023-03-20
基金项目:国家自然科学基金项目(51820105012,51278459); 浙江省自然科学基金项目(LQ14E080007,LQ14E090002)
作者简介:金伟良(1961-),男,工学博士,教授,博士生导师,E-mail:jinwl@zju.edu.cn。
更新日期/Last Update: 2024-07-20