|本期目录/Table of Contents|

[1]洪志湖,邹德旭,朱龙昌,等.基于改进JMA烈度的脉冲型地震强度预测方法研究[J].建筑科学与工程学报,2024,41(04):181-190.[doi:10.19815/j.jace.2024.01081]
 HONG Zhihu,ZOU Dexu,ZHU Longchang,et al.Research on prediction method of pulse type earthquake intensity based on improved JMA intensity[J].Journal of Architecture and Civil Engineering,2024,41(04):181-190.[doi:10.19815/j.jace.2024.01081]
点击复制

基于改进JMA烈度的脉冲型地震强度预测方法研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年04期
页码:
181-190
栏目:
防灾减灾工程
出版日期:
2024-07-19

文章信息/Info

Title:
Research on prediction method of pulse type earthquake intensity based on improved JMA intensity
文章编号:
1673-2049(2024)04-0181-10
作者:
洪志湖1,邹德旭1,朱龙昌1,周仿荣1,代维菊1,严敬义1,闵青云1,朱登杰2,王 闯2
(1. 云南电网有限责任公司电力科学研究院,云南 昆明 650217; 2. 南方电网科学研究院有限责任公司,广东 广州 510663)
Author(s):
HONG Zhihu1, ZOU Dexu1, ZHU Longchang1, ZHOU Fangrong1, DAI Weiju1, YAN Jingyi1, MIN Qingyun1, ZHU Dengjie2, WANG Chuang2
(1. Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, Yunnan, China; 2. CSG Electric Power Research Institute, Guangzhou 510663, Guangdong, China)
关键词:
仪器烈度 带通滤波器 脉冲型地震 地震强度 地震动合成
Keywords:
instrumental intensity band-pass filter pulse type earthquake earthquake intensity ground motion synthesis
分类号:
P315
DOI:
10.19815/j.jace.2024.01081
文献标志码:
A
摘要:
为解决中国强震观测台网布设稀疏、脉冲型地震记录少、难以评估某一地区脉冲地震烈度大小的问题,提出了一种预测脉冲型地震烈度的方法,根据历史地震情况、场地条件、地质情况,采取人工合成的方法生成脉冲型地震,研究日本气象厅计测烈度(JMA烈度)与脉冲地震的相关性,并利用中国地震仪器烈度滤波器对JMA烈度方法进行修正。通过算例计算了鲁甸地震53QQC台站的JMA烈度,并绘制了鲁甸地震和汶川地震的烈度分布云图; 选取汶川地震部分台站,对比分析改进JMA烈度与典型烈度计算方法。结果表明:从历史地震数据中提取的高频成分与根据场地、地质情况等生成的低频脉冲成分相叠加,可实现脉冲型地震动的人工合成; 随着脉冲速度不断增大,JMA烈度呈增大趋势,回归分析结果表明JMA烈度与脉冲速度的对数呈线性关系; 随着脉冲周期的不断增大,JMA烈度呈上升趋势,回归分析结果同样显示为线性关系,可见JMA烈度与脉冲地震有较强的关联性,可以用来衡量脉冲型地震动强度; 相较于原滤波器,改进后的滤波器有效频带明显更宽,有效频带在0.3~3 Hz之间,能够涵盖中国绝大部分工程结构的卓越频率,有效频带内部更加平坦,而在有效频带外部则呈现更陡峭的响应,更接近理想滤波器的特性。
Abstract:
In order to solve the problems that the strong earthquake observation network was sparse in China, the pulse type earthquake records were few, and it was difficult to evaluate pulse type earthquake intensity in a certain area, a method to predict the pulse earthquake intensity was proposed. According to the historical earthquake situation, site condition and geological condition, impulsive earthquakes were generated through the utilization of artificial synthesis. The correlation between Japan Meteorological Agency(JMA)intensity and pulse type earthquakes was studied, and the JMA intensity method was modified by using the intensity filter of China seismic instrument. The intensity of 53QQC station of Ludian earthquake was calculated by an example, and the intensity distribution cloud maps of Ludian earthquake and Wenchuan earthquake were drawn. Utilizing seismic stations from the Wenchuan earthquake, a comparative analysis was conducted between the improved JMA intensity calculation method and conventional intensity calculation methods. The results show that the high frequency components extracted from the historical seismic data are superimposed with the low frequency pulse components generated according to the site and geological conditions, and the artificial synthesis of pulsed ground motions can be realized. With the increasing of pulse speed, the JMA intensity exhibits an increasing trend. Regression analysis indicates a strong linear relationship between the logarithm of the pulse speed and JMA intensity. Simultaneously, as the pulse period progressively increases, JMA intensity shows an ascending trend. Regression analysis for pulse period and JMA intensity also reveals a linear relationship. It is evident that JMA intensity is closely related to pulse seismic and can be utilized for measuring pulse ground motion intensity. In comparison to the original filter, the improved filter features a significantly wider effective bandwidth. The effective frequency band is between 0.3-3 Hz, which can cover the excellent frequency of most engineering structures in China. Internally, it demonstrates a more uniform response within the effective bandwidth, while the external effective bandwidth displays a steeper response, resembling characteristics closer to an ideal filter.

参考文献/References:

[1] 刘启方,袁一凡,金 星,等.近断层地震动的基本特征[J].地震工程与工程振动,2006,26(1):1-10.
LIU Qifang,YUAN Yifan,JIN Xing,et al.Basic characteristics of near-fault ground motion[J].Earthquake Engineering and Engineering Vibration,2006,26(1):1-10.
[2]SOMERVILLE P G.Magnitude scaling of the near fault rupture directivity pulse[J].Physics of the Earth and Planetary Interiors,2003,137(1):201-212.
[4]陈笑宇,王东升,付建宇,等.近断层地震动脉冲特性研究综述[J].工程力学,2021,38(8):1-14,54.
CHEN Xiaoyu,WANG Dongsheng,FU Jianyu,et al.State-of-the-art review on pulse characteristics of near-fault ground motions[J].Engineering Mechanics,2021,38(8):1-14,54.
[5]李春锋.近断层脉冲型地震动的长周期效应[J].国际地震动态,2010,40(2):33-34.
LI Chunfeng.Long-period effect of near-fault pulse ground motion[J].Recent Developments in World Seismology,2010,40(2):33-34.
[6]蒲北辰,周绪红,刘永健,等.钢管混凝土组合桁梁桥近、远场抗震性能[J].建筑科学与工程学报,2018,35(5):118-127.
PU Beichen,ZHOU Xuhong,LIU Yongjian,et al.Anti-seismic performance of CFST composite trussed bridge caused by near-field and far-field earthquakes[J].Journal of Architecture and Civil Engineering,2018,35(5):118-127.
[7]卢大伟,李小军.我国强震动观测的现状与发展趋势[J].山西地震,2008(3):40-41,48.
LU Dawei,LI Xiaojun.Present situation and developing trend of strong motion observation in China[J].Earthquake Research in Shanxi,2008(3):40-41,48.
[8]张 凡.脉冲型地震动人工合成方法及其对大跨斜拉桥地震响应分析[D].南京:东南大学,2016.
ZHANG Fan.Artificial synthesis of near-fault pulse-type ground motion and its influence on the responses of long-span cable-stayed bridge[D].Nanjing:Southeast University,2016.
[9]MAVROEIDIS G P.A mathematical representation of near-fault ground motions[J].The Bulletin of the Seismological Society of America,2003,93(3):1099-1131.
[10]YANG D,ZHOU J.A Stochastic model and synthesis for near-fault impulsive ground motions[J].Earthquake Engineering Structural Dynamics,2015,44(2):243-264.
[11]SEHHATI R,RODRIGUEZ-MAREK A,ELGAWADY M,et al.Effects of near-fault ground motions and equivalent pulses on multi-story structures[J].Engineering Structures,2011,33(3):767-779.
[12]杨迪雄,潘建伟,李 刚.近断层脉冲型地震动作用下建筑结构的层间变形分布特征和机理分析[J].建筑结构学报,2009,30(4):108-118.
YANG Dixiong,PAN Jianwei,LI Gang.Deformational distribution feature and mechanism analysis of building structures subjected to near-fault pulse-type ground motions[J].Journal of Building Structures,2009,30(4):108-118.
[13]李 杰,宋 萌.随机地震动的概率密度演化[J].建筑科学与工程学报,2013,30(1):13-18.
LI Jie,SONG Meng.Probability density evolution of stochastic seismic ground motion[J].Journal of Architecture and Civil Engineering,2013,30(1):13-18.
[14]胡聿贤.地震工程学[M].北京:地震出版社,2006.
HU Yuxian.Earthquake engineering[M].Beijing:Seismological Press,2006.
[15]马 强,李水龙,李山有,等.不同地震动参数与地震烈度的相关性分析[J].地震工程与工程振动,2014,34(4):83-92.
MA Qiang,LI Shuilong,LI Shanyou,et al.On the correlation of ground motion parameters with seismic intensity[J].Earthquake Engineering and Engineering Dynamics,2014,34(4):83-92.
[16]WALD D J,QUITORIANO V,HEATON T H,et al.TriNet “ShakeMaps”:rapid generation of peak ground motion and intensity maps for earthquakes in southern California[J].Earthquake Spectra,1999,15(3):537-554.
[17]中国地震烈度表:GB/T 17742—2020[S].北京:中国标准出版社,2020.
The Chinese seismic intensity scale:GB/T 17742—2020[S].Beijing:Standards Press of China,2020.
[18]SOURIAU A.Quantifying felt events:a joint analysis of intensities,accelerations and dominant frequencies[J].Journal of Seismology,2006,10(1):23-38.
[19]FAENZA L,MICHELINI A.Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap[J].Geophysical Journal International,2010,180(3):1138-1152.
[20]ARIOGLU E,ARIOGLU B,GIRGIN C.Assessment of the eastern Marmara earthquake in terms of acceleration values[J].Beton Prefabrikasyon,2001,57-58:5-15.
[21]关曙渊,单振东,马 荣.日本仪器烈度计算3种方法对比[J].地震科学进展,2020,50(8):20-24.
GUAN Shuyuan,SHAN Zhendong,MA Rong.Comparison of instrument intensities using three different methods of Japan[J].Progress in Earthquake Sciences,2020,50(8):20-24.
[22]功刀卓,青井真,中村洋光,等.用于地震烈度计算的近似滤波的改进[J].世界地震译丛,2013,44(3):57-65.
TAKASHI Kunugi,SHIN Aoi,HIROKO Azumi,et al.The improvement of the seismic intensity calculation by using the approximate filtering[J].Translated World Seismology,2013,44(3):57-65.
[23]温留汉·黑沙,张永山,汪大洋.工程结构地震易损性与经济损失评估研究现状[J].建筑科学与工程学报,2015,32(6):17-29.
WENLIUHAN Heisha,ZHANG Yongshan,WANG Dayang.Review on seismic vulnerability and economic loss assessment of engineering structures[J].Journal of Architecture and Civil Engineering,2015,32(6):17-29.
[24]田玉基,杨庆山,卢明奇.近断层脉冲型地震动的模拟方法[J].地震学报,2007,29(1):77-84,114.
TIAN Yuji,YANG Qingshan,LU Mingqi.Simulation method of near-fault pulse-type ground motion[J].Acta Seismologica Sinica,2007,29(1):77-84,114.
[25]王宇航.近断层区域划分及近断层速度脉冲型地震动模拟[D].成都:西南交通大学,2015.
WANG Yuhang.The near-fault region zoning and near-fault velocity pulse-like ground motion simulation[D].Chengdu:Southwest Jiaotong University,2015.
[26]BAKER J W.Quantitative classification of near-fault ground motions using wavelet analysis[J].The Bulletin of the Seismological Society of America,2007,97(5):1486-1501.
[27]KHANSEFID A.Pulse-like ground motions:statistical characteristics,and GMPE development for the Iranian Plateau[J].Soil Dynamics and Earthquake Engineering,2020,134:106164.
[28]康兰池,金 星,励 进.中国地震仪器烈度滤波器的设计[J].自然灾害学报,2012,21(5):98-107.
KANG Lanchi,JIN Xing,LI Jin.Filter design of Chinese instrumental seismic intensity[J].Journal of Natural Disasters,2012,21(5):98-107.
[29]金 星,张红才,李 军,等.地震仪器烈度标准初步研究[J].地球物理学进展,2013,28(5):2336-2351.
JIN Xing,ZHANG Hongcai,LI Jun,et al.Preliminary study on instrumental seismic intensity standard[J].Progress in Geophysics,2013,28(5):2336-2351.
[30]卢永坤,张建国,宋立军,等.2014年云南鲁甸6.5级地震烈度分布与房屋震害特征[J].地震研究,2014,37(4):549-557,669.
LU Yongkun,ZHANG Jianguo,SONG Lijun,et al.Analysis on intensity distribution and seismic disaster characteristics of building of Yunnan Ludian MS6.5 earthquake in 2014[J].Journal of Seismological Research,2014,37(4):549-557,669.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-01-24
基金项目:南方电网公司科技项目(YNKJXM20220019)
作者简介:洪志湖(1993-),男,工程师,E-mail:zhihuhong@foxmail.com。
更新日期/Last Update: 2024-07-20