|本期目录/Table of Contents|

[1]王 凤,陈树利,袁梦皓,等.装配式高强钢组合延性桁框结构滞回性能研究[J].建筑科学与工程学报,2024,41(05):23-32.[doi:10.19815/j.jace.2022.10093]
 WANG Feng,CHEN Shuli,YUAN Menghao,et al.Research on hysteretic behavior of prefabricated special truss moment frame fabricated with high-strength steel[J].Journal of Architecture and Civil Engineering,2024,41(05):23-32.[doi:10.19815/j.jace.2022.10093]
点击复制

装配式高强钢组合延性桁框结构滞回性能研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
41卷
期数:
2024年05期
页码:
23-32
栏目:
建筑结构
出版日期:
2024-09-20

文章信息/Info

Title:
Research on hysteretic behavior of prefabricated special truss moment frame fabricated with high-strength steel
文章编号:
1673-2049(2024)05-0023-10
作者:
王 凤1,陈树利2,袁梦皓1,李 宁3,王珊珊4
(1. 兰州理工大学 土木工程学院,甘肃 兰州 730050; 2. 山东工业职业学院 建筑与信息工程学院,山东 淄博 256414; 3. 北京中信渤海铝幕墙装饰工程有限公司,北京 101200; 4. 河北机电职业技术学院 材料与建筑工程系,河北 邢台 054002)
Author(s):
WANG Feng1, CHEN Shuli2, YUAN Menghao1, LI Ning3, WANG Shanshan4
(1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; 2. School of Architecture and Information Engineering, Shandong Vocational College of Industry, Zibo 256414, Shandong, China; 3. Beijing CITIC Bohai Aluminum Curtain Wall Decoration Engineering Co. Ltd., Beijing 101200, China; 4. Department of Materials and Architectural Engineering, Hebei Institute of Mechanical and Electrical technology, Xingtai 054002, Hebei, China)
关键词:
装配式高强钢组合延性桁框结构 承载力 滞回性能 耗能段长度
Keywords:
prefabricated special truss moment frame fabricated with high-strength steel bearing capacity hysteresis performance length of energy dissipation section
分类号:
TU392
DOI:
10.19815/j.jace.2022.10093
文献标志码:
A
摘要:
为研究装配式高强钢组合延性桁框结构(HSS-PSTMF)的抗震性能并扩展其工程应用,通过ABAQUS有限元软件建立了不同耗能段长度和节间数量的HSS-PSTMF模型; 对装配式高强钢组合延性桁框结构的滞回性能进行了数值分析,研究了耗能段长度、节间数量及长深比对结构承载力、刚度、延性和耗能能力的影响规律。结果表明:延性桁框结构(STMF)体系中主要通过耗能段耗散地震能量; 改变耗能段长度对结构的承载力、延性、刚度、耗能能力影响较大; 当耗能段长度一定时,改变耗能段节间数量对结构的承载力、延性、耗能能力影响较小; 耗能段长度介于0.2L~0.4L(L为跨度)之间且耗能段任何节间的长深比在0.67~1.5时结构抗震性能较好; 耗能段长度介于0.4L~0.5L时,在满足结构安全性要求的前提下,可以将结构的长深比提高到3。
Abstract:
In order to study the seismic performance of prefabricated special truss moment frame fabricated with high-strength steel(HSS-PSTMF)and expand its engineering applications, the HSS-PSTMF models were established using ABAQUS finite element software for different energy dissipation section lengths and number of internodes. The numerical analysis was conducted on the hysteresis performance of prefabricated special truss moment frame fabricated with high-strength steel. The influences of the length of energy dissipation section, the number of internodes, and the length-to-depth ratio on the structural bearing capacity, stiffness, ductility, and energy dissipation capacity were studied. The results show that in special truss moment frame(STMF)system, seismic energy is mainly dissipated through energy dissipation sections. Changing the length of energy dissipation section has a significant impact on the bearing capacity, ductility, stiffness, and energy dissipation capacity of structure. When the length of energy dissipation section is constant, changing the number of internodes has a relatively small impact on the structural bearing capacity, ductility, and energy dissipation capacity. The seismic performance of structure is better when the length of the energy dissipation section is between 0.2L-0.4L(L is span)and the length-to-depth ratio of any internodes of energy dissipation section is between 0.67-1.5. When the length of energy dissipation section ranges from 0.4L to 0.5L, the length-to-depth ratio of structure can be increased to 3 while meeting the safety requirements of structure.

参考文献/References:

[1] GOEL S C,ITANI A M.Seismic behavior of open-web truss-moment frames[J].Journal of Structural Engineering,1994,120(6):1763-1780.
[2]BASHA H S,GOEL S C.Special truss moment frames with Vierendeel middle panel[J].Engineering Structures,1995,17(5):352-358.
[3]王 凤,苏明周,李 慎,等.多层高强钢组合Y形偏心支撑钢框架抗震性能试验研究[J].土木工程学报,2016,49(3):64-71,97.
WANG Feng,SU Mingzhou,LI Shen,et al.Experimental study on seismic behavior of multi-storey high strength steel composite Y-eccentrically braced steel frame[J].China Civil Engineering Journal,2016,49(3):64-71,97.
[4]Seismic provisions for structural steel buildings:ANSI/AISC 341-16[S].Chicago:American Institute of Steel Construction,2016.
[5]PARRA-MONTESINOS G J,GOEL S C,KIM K Y.Behavior of steel double-channel built-up chords of special truss moment frames under reversed cyclic bending[J].Journal of Structural Engineering,2006,132(9):1343-1351.
[6]SIMASATHIEN S,JIANSINLAPADAMRONG C,CHAO S H.Seismic behavior of special truss moment frame with double hollow structural sections as chord members[J].Engineering Structures,2017,131:14-27.
[7]JIANSINLAPADAMRONG C,PRICE B,CHAO S H.Cyclic behavior of steel double-channel built-up components with a new lateral-torsional-buckling prevention detail[J].Journal of Structural Engineering,2018,144(8):04018127.1-04018127.15.
[8]JIANSINLAPADAMRONG C,PARK K,HOOPER J,et al.Seismic design and performance evaluation of long-span special truss moment frames[J].Journal of Structural Engineering,2019,145(7):04019053.1-04019053.16.
[9]郭 兵,王金涛,刘川川,等.X形弱腹杆式延性桁框结构探讨[J].建筑结构学报,2013,34(8):119-125.
GUO Bing,WANG Jintao,LIU Chuanchuan,et al.Study on special truss moment frames with weak X-diagonals[J].Journal of Building Structures,2013,34(8):119-125.
[10]郭 兵,张 帅,刘川川,等.空腹式延性桁框结构探讨[J].建筑钢结构进展,2013,15(1):1-7.
GUO Bing,ZHANG Shuai,LIU Chuanchuan,et al.Study on special truss moment frames with vierendeel web members[J].Progress in Steel Building Structures,2013,15(1):1-7.
[11]郭 兵,鲍 镇,刘川川,等.屈曲约束支撑式延性桁框结构探讨[J].土木工程学报,2013,46(6):76-81.
GUO Bing,BAO Zhen,LIU Chuanchuan,et al.Study on special truss moment frames with buckling restrained braces[J].China Civil Engineering Journal,2013,46(6):76-81.
[12]李 澈,张永丰,薛彦涛.特殊桁框(STMF)结构特点及工程应用[J].建筑科学,2019,35(1):124-129.
LI Che,ZHANG Yongfeng,XUE Yantao.Characteristics and application of special truss moment frame(STMF)[J].Building Science,2019,35(1):124-129.
[13]CHAO S H,JIANSINLAPADAMRONG C,SIMASATHIEN S,et al.Full-scale testing and design of special truss moment frames for high-seismic areas[J].Journal of Structural Engineering,2020,146(3):04019229.1-04019229.15.
[14]钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2017.
Standard for design of steel structures:GB 50017—2017[S].Beijing:China Architecture & Building Press,2017.
[15]矩形钢管混凝土结构技术规程:CECS 159—2004[S].北京:中国计划出版社,2004.
Technical specification for structures with concrete-filled rectangular steel tube members:CECS 159—2004[S].Beijing:China Planning Press,2004.
[16]仇 杰.装配式交错桁架与方钢管混凝土柱外环板-端板节点抗震性能试验研究[D].西安:西安建筑科技大学,2017.
QIU Jie.Experimental study on seismic performance of assembled joints of steel staggered truss to concrete-filled square steel tube column with external diaphragm and end-plate connections[D].Xi'an:Xi'an University of Architecture and Technology,2017.
[17]ZHENG L,WANG W D.Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario[J].Journal of Constructional Steel Research,2022,190:107151.
[18]韩林海.钢管混凝土结构:理论与实践[M].2版.北京:科学出版社,2007.
HAN Linhai.Concrete-filled steel tubular structure:theory and practice[M].2nd ed.Beijing:Science Press,2007.
[19]建筑抗震试验方法规程:JGJ/T 101—2015[S].北京:中国建筑工业出版社,2015.
Specification for seismic test of buildings:JGJ/T 101—2015[S].Beijing:China Architecture & Building Press,2015.
[20]ELLINGWOOD B R.Earthquake risk assessment of building structures[J].Reliability Engineering & System Safety,2001,74(3):251-262.
[21]郭靳时,金菊顺,庄新玲.钢筋混凝土结构设计[M].武汉:武汉大学出版社,2013.
GUO Jinshi,JIN Jushun,ZHUANG Xinling.Reinforced concrete structure design[M].Wuhan:Wuhan University Press,2013.
[22]建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社,2016.
Code for seismic design of buildings:GB 50011—2010[S].Beijing:China Architecture & Building Press,2016.

相似文献/References:

[1]张兴虎,徐靖,姜维山.新型钢-混凝土组合梁抗剪性能试验[J].建筑科学与工程学报,2010,27(01):97.
 ZHANG Xing-hu,XU Jing,JIANG Wei-shan.Experiment on Shear Resistance Behavior of New Steel-concrete Composite Beams[J].Journal of Architecture and Civil Engineering,2010,27(05):97.
[2]许晶,贡金鑫.钢筋混凝土偏心受压构件二阶效应计算对比分析[J].建筑科学与工程学报,2010,27(03):65.
 XU Jing,GONG Jin-xin.Comparative Analysis of Second-order Effect on Eccentrically Compressed Reinforced Concrete Member[J].Journal of Architecture and Civil Engineering,2010,27(05):65.
[3]王小安,郭彦林,兰涛.采光天顶支承结构设计与施工一体化时变分析模型[J].建筑科学与工程学报,2010,27(04):96.
 WANG Xiao-an,GUO Yan-lin,LAN Tao.Design-construction Integrated Time-varying Analysis Model for Supporting Structure of Glass Roof[J].Journal of Architecture and Civil Engineering,2010,27(05):96.
[4]王吉忠,赵玉杰.CFRP布持载加固高强混凝土偏压柱受力性能[J].建筑科学与工程学报,2011,28(01):20.
 WANG Ji-zhong,ZHAO Yu-jie.Mechanical Behaviors of High-strength Concrete Columns Strengthened with CFRP Sheets Under Sustained Eccentric[J].Journal of Architecture and Civil Engineering,2011,28(05):20.
[5]董海,何化南,吴智敏,等.界面处理对FRP加固钢筋混凝土梁承载力的影响[J].建筑科学与工程学报,2011,28(02):75.
 DONG Hai,HE Hua-nan,WU Zhi-min,et al.Effect of Surface Preparation on Bearing Capacity of RC Beams Strengthened with FRP[J].Journal of Architecture and Civil Engineering,2011,28(05):75.
[6]张建伟,杨亚彬,曹万林,等.圆钢管混凝土边框多重组合低矮剪力墙的抗震性能[J].建筑科学与工程学报,2011,28(03):23.
 ZHANG Jian-wei,YANG Ya-bin,CAO Wan-lin,et al.Seismic Performance of Composite Low-rise Shear Wall with Concrete-filled Round Steel Tube Columns and Concealed Steel Trusses[J].Journal of Architecture and Civil Engineering,2011,28(05):23.
[7]石宇,周绪红,刘永健.冷弯薄壁卷边槽钢偏心受压构件承载力计算的折减强度法[J].建筑科学与工程学报,2011,28(03):40.
 SHI Yu,ZHOU Xu-hong,LIU Yong-jian.Strength-reduction Method for Load-carrying Capacity of Cold-formed Thin-walled Lipped Channel Members Under Eccentric Compression[J].Journal of Architecture and Civil Engineering,2011,28(05):40.
[8]李俊华,于长海,唐跃锋,等.CFRP布加固火灾后钢筋混凝土柱的试验研究[J].建筑科学与工程学报,2011,28(04):48.
 LI Jun-hua,YU Chang-hai,TANG Yue-feng,et al.Experimental Research on Rehabilitation with CFRP Sheets for ReinforcedConcrete Columns After Exposure to Fire[J].Journal of Architecture and Civil Engineering,2011,28(05):48.
[9]单炜,李玉顺,蒋天元.钢-竹组合结构体系设计方法[J].建筑科学与工程学报,2012,29(01):15.
 SHAN Wei,LI Yu-shun,JIANG Tian-yuan.Design Method of Steel-bamboo Composite Structure System[J].Journal of Architecture and Civil Engineering,2012,29(05):15.
[10]魏巍巍,贡金鑫.钢筋混凝土柱荷载-变形计算的理论模型[J].建筑科学与工程学报,2012,29(01):38.
 WEI Wei-wei,GONG Jin-xin.Theoretical Models of Load-deformation Calculation for Reinforced Concrete Columns[J].Journal of Architecture and Civil Engineering,2012,29(05):38.

备注/Memo

备注/Memo:
收稿日期:2023-10-21
基金项目:国家自然科学基金项目(51908264)
作者简介:王 凤(1985-),女,工学博士,副教授,E-mail:wangfeng5776@163.com。
更新日期/Last Update: 2024-09-30