[1] 王 芳.钢筋工程设计及施工缺陷分析[J].科学技术与工程,2011,11(4):877-880.
WANG Fang.Design and construction defects analysis of ordinary steel bar in reinforced concrete structure[J].Science Technology and Engineering,2011,11(4):877-880.
[2]刘金龙,陆伟东,袁小军.混凝土中不同直径钢筋的雷达图像研究[J].建筑科学,2020,36(7):137-141.
LIU Jinlong,LU Weidong,YUAN Xiaojun.Research on radar images of rebars with different diameters in concrete[J].Building Science,2020,36(7):137-141.
[3]叶爱文,谢慧才.混凝土中钢筋直径雷达检测的神经网络方法[J].建筑科学与工程学报,2008,25(4):105-110.
YE Aiwen,XIE Huicai.Neural network method of diameter detection of rebar in concrete by using GPR[J].Journal of Architecture and Civil Engineering,2008,25(4):105-110.
[4]杨 宇,凌同华,廖艳程.混凝土构件深浅埋钢筋模拟检测试验与偏移分析[J].土木建筑与环境工程,2018,40(6):139-145.
YANG Yu,LING Tonghua,LIAO Yancheng.Simulation test and migration analysis for detection signal of deep and shallow reinforcement in concrete member[J].Journal of Civil,Architectural & Environmental Engineering,2018,40(6):139-145.
[5]刘世龙,马智亮.基于点云的钢筋数量和间距自动检查算法[J].建筑科学与工程学报,2022,39(4):90-99.
LIU Shilong,MA Zhiliang.Automatic inspection algorithm of quantity and spacing of reinforcement based on point cloud[J].Journal of Architecture and Civil Engineering,2022,39(4):90-99.
[6]KIM M K,THEDJA J P P,CHI H L,et al.Automated rebar diameter classification using point cloud data based machine learning[J].Automation in Construction,2021,122:103476.
[7]LI F X,KIM M K,LEE D E.Geometrical model based scan planning approach for the classification of rebar diameters[J].Automation in Construction,2021,130:103848.
[8]HAN K,GWAK J Y,GOLPARVAR-FARD M,et al.Vision-based field inspection of concrete reinforcing bars[C]//DAWOOD N, KASSEM M.Proceedings of the 13th International Conference on Construction Applications of Virtual Reality.London: Teesside University,2013:1-10.
[9]闫天冉,马晓静,饶颖露,等.基于改进Mask R-CNN的建筑钢筋尺寸检测算法[J].计算机工程,2021,47(9):274-281.
YAN Tianran,MA Xiaojing,RAO Yinglu,et al.Rebar size detection algorithom for intelligent construction supervision based on improved Mask R-CNN[J].Computer Engineering,2021,47(9):274-281.
[10]李姚舜,刘黎志.嵌入注意力机制的轻量级钢筋检测网络[J].计算机应用,2022,42(9):2900-2908.
LI Yaoshun,LIU Lizhi.Lightweight network for rebar detection with attention mechanism[J].Journal of Computer Applications,2022,42(9):2900-2908.
[11]XIE S N,TU Z W.Holistically-nested edge detection[J].International Journal of Computer Vision,2017,125(1):3-18.
[12]邵延华,张 铎,楚红雨,等.基于深度学习的YOLO目标检测综述[J].电子与信息学报,2022,44(10):3697-3708.
SHAO Yanhua,ZHANG Duo,CHU Hongyu,et al.A review of YOLO object detection based on deep learning[J].Journal of Electronics & Information Technology,2022,44(10):3697-3708.
[13]YU J,JIANG Y,WANG Z,et al.Unitbox:an advanced object detection network[C]//ALAN H,CEES S,MARCEL W,et al.Proceedings of the 24th ACM International Conference on Multimedia.New York:Association for Computing Machinery,2016:516-520.
[14]HOU Q B,ZHOU D Q,FENG J S.Coordinate attention for efficient mobile network design[C]//IEEE.2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Nashville:IEEE,2021:13708-13717.
[15]PANBOONYUEN T,THONGBAI S,WONGWEERANIMIT W,et al.Object detection of road assets using transformer-based YOLOX with feature pyramid decoder on Thai highway panorama[J].Information,2021,13(1):1-12.
[16]ZHAN J L,HU Y W,CAI W W,et al.PDAM-STPNNet:a small target detection approach for wildland fire smoke through remote sensing images[J].Symmetry,2021,13(12):2260.
[17]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//IEEE.2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE,2017:936-944.
[18]混凝土结构工程施工质量验收规范:GB 50204—2015[S].北京:中国建筑工业出版社,2015.
Code for quality acceptance of concrete structure construction:GB 50204—2015[S].Beijing:China Architecture & Building Press,2015.
[1]李书进,赵 源,孔 凡,等.卷积神经网络在结构损伤诊断中的应用[J].建筑科学与工程学报,2020,37(06):29.
LI Shu-jin,ZHAO Yuan,KONG Fan,et al.Application of Convolutional Neural Network in Structural
Damage Identification[J].Journal of Architecture and Civil Engineering,2020,37(06):29.
[2]杨 铄,许清风,王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报,2022,39(04):38.[doi:10.19815/j.jace.2022.02043]
YANG Shuo,XU Qing-feng,WANG Zhuo-lin.Research Progress on Structural Damage Detection Based on Convolutional Neural Networks[J].Journal of Architecture and Civil Engineering,2022,39(06):38.[doi:10.19815/j.jace.2022.02043]
[3]卢昱杰,刘 博,刘金杉,等.面向施工机械的深度学习图像数据集合成方法[J].建筑科学与工程学报,2022,39(04):100.[doi:10.19815/j.jace.2021.07146]
LU Yu-jie,LIU Bo,LIU Jin-shan,et al.Image Dataset Synthetic Method for Construction Machinery Based on Deep Learning[J].Journal of Architecture and Civil Engineering,2022,39(06):100.[doi:10.19815/j.jace.2021.07146]