|本期目录/Table of Contents|

[1]刘宜丰,蔡宏昊,刘晓光.钢管混凝土束剪力墙-钢梁全螺栓连接节点初始刚度及抗震性能研究[J].建筑科学与工程学报,2025,42(01):26-40.[doi:10.19815/j.jace.2023.01032]
 LIU Yifeng,CAI Honghao,LIU Xiaoguang.Research on initial stiffness and seismic performance of all-bolted joints of concrete-filled multicellular steel tube shear wall-steel beam[J].Journal of Architecture and Civil Engineering,2025,42(01):26-40.[doi:10.19815/j.jace.2023.01032]
点击复制

钢管混凝土束剪力墙-钢梁全螺栓连接节点初始刚度及抗震性能研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年01期
页码:
26-40
栏目:
建筑结构
出版日期:
2025-01-20

文章信息/Info

Title:
Research on initial stiffness and seismic performance of all-bolted joints of concrete-filled multicellular steel tube shear wall-steel beam
文章编号:
1673-2049(2025)01-0026-15
作者:
刘宜丰1,蔡宏昊1,刘晓光2
(1. 中国建筑西南设计研究院有限公司,四川 成都 610042; 2. 杭萧钢构股份有限公司,浙江 杭州 310003)
Author(s):
LIU Yifeng1, CAI Honghao1, LIU Xiaoguang2
(1. China Southwest Architecture Design and Research Institute Co., Ltd, Chengdu 610042, Sichuan, China; 2. Hangxiao Steel Structure Co., Ltd., Hangzhou 310003, Zhejiang, China)
关键词:
装配式钢结构 刚性 抗震性能 有限元分析 参数化分析 端板连接
Keywords:
fabricated steel structure rigidity seismic behavior finite element analysis parametric analysis end plate connection
分类号:
TU352
DOI:
10.19815/j.jace.2023.01032
文献标志码:
A
摘要:
针对钢管混凝土束剪力墙结构提出了2种全螺栓刚性连接节点,共设计了6个基于高强螺栓的钢管混凝土束剪力墙-H型钢梁全螺栓端板式连接节点和1个钢管混凝土束剪力墙-H型钢梁全螺栓侧板式连接节点。对7个节点进行了低周往复加载试验,采用ABAQUS软件建立有限元模型,将有限元模拟结果与试验结果进行对比验证后,通过参数化分析系统研究了不同参数对钢管混凝土束剪力墙-H型钢梁全螺栓连接节点抗震性能的影响。结果表明:2种全螺栓连接节点均能实现刚性连接; 端板式节点的刚度主要取决于钢梁端板厚度和墙体端板厚度,侧板式节点主要通过螺栓的滑移来耗散能量,表现出低屈服承载力、高延性的特点; 侧板式节点中螺栓直径、摩擦因数对节点滑移荷载有较大影响,对抗弯极限承载力影响较小; 给出的节点设计建议可为工程设计提供参考。
Abstract:
Two kinds of all-bolted rigid connection joints were proposed for concrete-filled multicellular steel tube shear wall. A total of six concrete-filled multicellular steel tube shear wall-H-shaped steel beam all-bolted end plate connection joints based on high strength bolts and one concrete-filled multicellular steel tube shear wall-H-shaped steel beam all-bolted side plate connection joint were designed. The cyclic loading test of seven specimen joints was conducted. The finite element model was established by ABAQUS software. After comparing the finite element simulation results with the experimental results, the influence of different parameters on the seismic behavior of concrete-filled multicellular steel tube shear wall-H-shaped steel beam all-bolted connection joints was studied by parametric analysis system. The results show that the two all-bolted connection joints can achieve rigid connection. The stiffness of end plate joints depends mainly on steel beam end plate and wall end plate thicknesses. Side plate joints dissipate energy mainly through the slip of bolts, showing the characteristics of low yield-bearing capacity and high ductility. The bolt diameter and friction coefficient in the side plate joints have a great influence on the sliding load of the joints, and the influence on the bending ultimate bearing capacity is small. The proposed design suggestions for joints can provide reference for engineering design.

参考文献/References:

[1] ZHANG X M, QIN Y, CHEN Z H. Experimental seismic behavior of innovative composite shear walls[J]. Journal of Constructional Steel Research, 2016, 116: 218-232.
[2]ZHANG X M, QIN Y, CHEN Z H, et al. Experimental behavior of innovative T-shaped composite shear walls under in-plane cyclic loading[J]. Journal of Constructional Steel Research, 2016, 120: 143-159.
[3]郭 兵.钢框架梁柱端板连接在循环荷载作用下的破坏机理及抗震设计对策[D].西安:西安建筑科技大学,2002.
GUO Bing. Collapse mechanism and design criterion of steel beam-to-column end-plate connections under cyclic load[D]. Xi'an: Xi'an University of Architecture and Technology, 2002.
[4]LI T Q,NETHERCOT D A,CHOO B S.Behaviour of flush end-plate composite connections with unbalanced moment and variable shear/moment ratios-I. experimental behaviour[J]. Journal of Constructional Steel Research, 1996, 38(2): 125-164.
[5]NORASHIDAH A R. Fatigue behaviour and reliability of extended hollobolt to concrete filled hollow section[D]. Nottingham:University of Nottingham, 2012.
[6]TIZANI W, WANG Z Y, HAJIRASOULIHA I. Hysteretic performance of a new blind bolted connection to concrete filled columns under cyclic loading:an experimental investigation[J]. Engineering Structures, 2013, 46: 535-546.
[7]MOURAD S. Behaviour of blind bolted moment connections for square HSS columns[D]. Hamilton: McMaster University, 1994.
[8]WANG J F, GUO S P. Structural performance of blind bolted end plate joints to concrete-filled thin-walled steel tubular columns[J]. Thin-walled Structures, 2012, 60: 54-68.
[9]WANG J F, HAN L H, UY B. Hysteretic behaviour of flush end plate joints to concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research, 2009, 65(8/9): 1644-1663.
[10]WANG Z B, TAO Z, LI D S, et al. Cyclic behaviour of novel blind bolted joints with different stiffening elements[J]. Thin-walled Structures, 2016, 101: 157-168.
[11]GARDNER A,GOLDSWORTHY H.Moment-resisting connections for composite frames[C]//CRC Press. Proceedings of Conference on Mechanics of Structures and Materials. Boca Raton: CRC Press, 1999: 309-314.
[12]GARDNER A P, GOLDSWORTHY H M. Experimental investigation of the stiffness of critical components in a moment-resisting composite connection[J]. Journal of Constructional Steel Research, 2005, 61(5): 709-726.
[13]PICARD A, GIROUX Y M. Moment connections between wide flange beams and square tubular columns[J]. Canadian Journal of Civil Engineering, 1976, 3(2): 174-185.
[14]GIROUX Y M, PICARD A. Rigid framing connections for tubular columns[J]. Canadian Journal of Civil Engineering, 1977, 4(2): 134-144.
[15]LEE J, GOLDSWORTHY H M, GAD E F. Blind bolted moment connection to sides of hollow section columns[J]. Journal of Constructional Steel Research, 2011, 67(12): 1900-1911.
[16]WANG W, LI M X, CHEN Y Y, et al. Cyclic behavior of endplate connections to tubular columns with novel slip-critical blind bolts[J]. Engineering Structures, 2017, 148: 949-962.
[17]钢结构高强度螺栓连接技术规程:JGJ 82—2011[S].北京:中国建筑工业出版社,2011.
Technical specification for high strength bolt connections of steel structures: JGJ 82—2011[S]. Beijing:China Architecture & Building Press, 2011.
[18]钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2017.
Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017.
[19]Eurocode 3: design of steel structures-part 1-8: design of joints: EN1993-1-8[S]. Brussels: CEN, 2005.
[20]Specification for structural steel buildings: ANSI/AISC360-05[S]. Chicago: American Institute of Steel Construction, 2005.
[21]韩林海,陶 忠,王文达.现代组合结构和混合结构:试验、理论和方法[M].北京:科学出版社,2009.
HAN Linhai, TAO Zhong, WANG Wenda. Advanced composite and mixed structures[M]. Beijing: Science Press, 2009.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-01-05 投稿网址:http://jace.chd.edu.cn
基金项目:国家重点研发计划项目(2020YFD1100703); 四川省科技计划项目(2020YFS0061)
作者简介:刘宜丰(1974-),男,工学博士,教授级高级工程师,E-mail:Lyf0142@163.com。
Author resume: LIU Yifeng(1974-), male, PhD, senior engineer, E-mail: Lyf0142@163.com.
更新日期/Last Update: 2025-01-20