[1] 叶何凯.钢管塔施工过程双平臂抱杆风致响应及钢管涡振疲劳研究[D].杭州:浙江大学,2019.
YE Hekai. Wind-induced response of double flat arm pole and vortex-induced fatigue of cylinders during construction of transmission tower[D]. Hangzhou: Zhejiang University, 2019.
[2]夏顺俊,赵 俊,马 龙,等.大跨越输电塔双平臂抱杆的风洞试验研究[J].工业建筑,2023,53(4):1-7,74.
XIA Shunjun, ZHAO Jun, MA Long, et al. Wind tunnel test study on crane structure with double-flat-arms derricks for long-span transmission towers[J]. Industrial Construction, 2023, 53(4): 1-7,74.
[3]陈守海,谭 平,杨子玄.输电塔动力特性计算与模态试验研究[J].噪声与振动控制,2017,37(6):139-143.
CHEN Shouhai, TAN Ping, YANG Zixuan. Calculation and modal testing of dynamic characteristics of transmission towers[J]. Noise and Vibration Control, 2017, 37(6): 139-143.
[4]陈麒麟,汪大海,向 越,等.输电线路下击暴流强风荷载最不利工况研究[J].防灾减灾工程学报,2024,44(1):90-98.
CHEN Qilin, WANG Dahai, XIANG Yue, et al. Study on critical load cases for transmission line under downburst[J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(1): 90-98.
[5]魏文晖,周 翔,邓 晨,等.基于能量法的下击暴流作用下输电塔线体系失效倒塌研究[J].建筑科学与工程学报,2020,37(6):73-80.
WEI Wenhui, ZHOU Xiang, DENG Chen, et al. Research on failure and collapse of transmission tower line system under downburst action based on energy method[J]. Journal of Architecture and Civil Engineering, 2020, 37(6): 73-80.
[6]邓洪洲,黄 河,司瑞娟.基于动力特性的输电塔结构优化设计[J].特种结构,2017,34(5):52-58.
DENG Hongzhou, HUANG He, SI Ruijuan. Optimization design of transmission tower based on dynamic characteristic[J]. Special Structures, 2017, 34(5): 52-58.
[7]屈成忠,张有佳,李慧颖.500 kV双回路输电耐张塔动力特性分析[J].中国电力,2008,41(11):66-70.
QU Chengzhong, ZHANG Youjia, LI Huiying. The effect of rigidity on dynamic characteristic of 500 kV transmission tower[J]. Electric Power, 2008, 41(11): 66-70.
[8]韩 彤.基于动力特性的输电塔结构优化设计[D].马鞍山:安徽工业大学,2015.
HAN Tong. Structure optimization design of transmission tower based on dynamic characteristics[D]. Maanshan: Anhui Universit of Technology, 2015.
[9]徐金城.内悬浮外拉线抱杆风振响应研究[D].合肥:合肥工业大学,2016.
XU Jincheng. Research on wind-induced response for inner suspended and outer guyed holding poles[D]. Hefei: Hefei University of Technology, 2016.
[10]董 琦.双平臂抱杆抗风稳定性及动力响应分析[D].吉林:东北电力大学,2019.
DONG Qi. Wind stability and dynamic response analysis of double flat arm derrick[D]. Jilin: Northeast Electric Power University, 2019.
[11]宋 玉.1 000千伏特高压铁塔组立施工中的抗风能力研究[D].吉林:东北电力大学,2017.
SONG Yu. Study on wind resistance of 1 000 kV tower erecting construction[D]. Jilin: Northeast Electric Power University, 2017.
[12]夏顺俊,朱 姣,赵 俊,等.基于有限元与现场实测的超高杆塔组立施工安全监控方法[J].机械制造与自动化,2023,52(1):239-243.
XIA Shunjun, ZHU Jiao, ZHAO Jun, et al. Safety monitoring method of ultra-high tower assembly construction based on finite element and field measurement[J]. Machine Building & Automation, 2023,52(1): 239-243.
[13]李文斌,金 明,周 方,等.输电工程双平臂抱杆动力性能分析[J].东北电力大学学报,2022,42(5):65-73.
LI Wenbin, JIN Ming, ZHOU Fang, et al. Dynamic performance analysis of double flat arm derrick in transmission engineering[J]. Journal of Northeast Electric Power University, 2022,42(5): 65-73.
[14]陶 然,周焕林,孟 增,等.基于响应面法和改进算术优化算法的抱杆优化设计[J].应用数学和力学,2022,43(10):1113-1122.
TAO Ran, ZHOU Huanlin, MENG Zeng, et al. Optimization design of holding poles based on the response surface methodology and the improved arithmetic optimization algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1113-1122.
[15]徐再根,郑为东,刘俊才,等.输电塔单变双角钢过渡节点试验研究与计算方法[J].建筑科学与工程学报,2022,39(2):69-77.
XU Zaigen, ZHENG Weidong, LIU Juncai, et al. Experimental study and calculation method of single-double angle steel transition joint of transmission tower[J]. Journal of Architecture and Civil Engineering, 2022, 39(2): 69-77.
[16]李佳鸿,李正良,王 涛.基于神经网络的输电塔钢管构件涡激振动幅值预测方法[J].工程力学,2024,41(1):64-75.
LI Jiahong, LI Zhengliang, WANG Tao. Prediction method for vortex-induced vibration amplitude of steel tubes in transmission towers based on neural network[J]. Engineering Mechanics, 2024, 41(1): 64-75.
[17]张 骞,叶 震,蔡建国,等.特高压长悬臂输电塔与输电塔-线耦合体系的风振特性[J].东南大学学报(自然科学版),2019,49(1):1-8.
ZHANG Qian, YE Zhen, CAI Jianguo, et al. Wind-induced response of UHV long cantilever transmission tower and tower-line coupled system[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(1): 1-8.
[18]高耸结构设计规范:GB 50135—2006[S].北京:中国计划出版社,2006.
Code for design of high-rising structures: GB 50135—2006[S]. Beijing: China Planning Press, 2006.
[19]架空送电线路杆塔结构设计技术规定:DL/T 5154—2002[S].北京:中国电力出版社,2002.
Technical regulation of design for tower and pole structures of overhead transmission line: DL/T 5154—2002[S]. Beijing: China Electric Power Press, 2002.
[20]吴 威,夏顺俊,方 磊,等.考虑塔与抱杆耦合的超大型输电高塔抗风分析[J].钢结构(中英文),2022,37(4):25-32.
WU Wei, XIA Shunjun, FANG Lei, et al. Wind resistance analysis of transmission tower considering interaction between tower and crane structure[J]. Steel Construction(Chinese & English), 2022, 37(4): 25-32.
[1]刘树堂.基于多波屈曲单元的输电铁塔结构抗风极限荷载分析[J].建筑科学与工程学报,2015,32(04):105.
LIU Shu-tang.Analysis of Wind-resistant Limit Load of Transmission Line Steel Tower Based on Multi-wave Buckling Elements[J].Journal of Architecture and Civil Engineering,2015,32(01):105.