[1] 刘洪波,佟 瑶,蒋垚俊,等.RC框架结构地震易损性分析方法研究进展[J].世界地震工程,2020,36(3):141-150.
LIU Hongbo, TONG Yao, JIANG Yaojun, et al. Recent development of seismic fragility analysis methods for RC frame structures[J]. World Earthquake Engineering, 2020, 36(3): 141-150.
[2]FEMA. Multi-hazard loss estimation methodology HAZUS-MH 2.1 advanced engineering building module(AEBM)technical and user's manual[M]. Washington DC: Federal Emergency Management Agency, 2012.
[3]LU X Z, HAN B, HORI M, et al. A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing[J]. Advances in Engineering Software, 2014, 70: 90-103.
[4]LU X Z, CHENG Q L, XU Z, et al. Real-time city-scale time-history analysis and its application in resilience-oriented earthquake emergency responses[J]. Applied Sciences, 2019, 9(17): 3497.
[5]WU R T, JAHANSHAHI M R. Deep convolutional neural network for structural dynamic response estimation and system identification[J]. Journal of Engineering Mechanics, 2019, 145(1): 04018125.
[6]YU Y, WANG C Y, GU X Y, et al. A novel deep learning-based method for damage identification of smart building structures[J]. Structural Health Monitoring, 2019, 18(1): 143-163.
[7]戴 伦,张文达,田石柱.桥梁线弹性地震反应的卷积神经网络估计[J].地震工程与工程振动,2021,41(4):188-195.
DAI Lun, ZHANG Wenda, TIAN Shizhu. Convolutional neural network estimation of bridge linear elastic seismic response[J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(4): 188-195.
[8]AHMED B, MANGALATHU S, JEON J S. Seismic damage state predictions of reinforced concrete structures using stacked long short-term memory neural networks[J]. Journal of Building Engineering, 2022, 46: 103737.
[9]周 玉,孙红玉,房 倩,等.不平衡数据集分类方法研究综述[J].计算机应用研究,2022,39(6):1615-1621.
ZHOU Yu, SUN Hongyu, FANG Qian, et al. Review of imbalanced data classification methods[J]. Application Research of Computers, 2022, 39(6): 1615-1621.
[10]卓 琳,赵厚宇,詹思延.异常检测方法及其应用综述[J].计算机应用研究,2020,37(增1):9-15.
ZHUO Lin, ZHAO Houyu, ZHAN Siyan. Overview of anomaly detection methods and their applications[J]. Application Research of Computers, 2020, 37(S1): 9-15.
[11]来 杰,王晓丹,向 前,等.自编码器及其应用综述[J].通信学报,2021,42(9):218-230.
LAI Jie, WANG Xiaodan, XIANG Qian, et al. Review on autoencoder and its application[J]. Journal on Communications, 2021, 42(9): 218-230.
[12]李清勇,王建柱,祝叶舟,等.基于结构相似深度卷积自编码的异常扣件检测模型[J].交通运输工程学报,2022,22(4):186-195.
LI Qingyong, WANG Jianzhu, ZHU Yezhou, et al. Anomalous fastener detection model based on deep convolutional autoencoder with structural similarity[J]. Journal of Traffic and Transportation Engineering,2022,22(4):186-195.
[13]AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[R]. Seoul: SNU Big Data AI Center, 2015.
[14]NIU Z J, YU K, WU X F. LSTM-based VAE-GAN for time-series anomaly detection[J]. Sensors, 2020, 20(13): 3738.
[15]邵世宽,张宏钧,肖钦锋,等.基于无监督对抗学习的时间序列异常检测[J].南京大学学报(自然科学),2021,57(6):1042-1052.
SHAO Shikuan, ZHANG Hongjun, XIAO Qinfeng, et al. Time series anomaly detection based on unsupervised adversarial learning[J]. Journal of Nanjing University(Natural Science), 2021, 57(6): 1042-1052.
[16]SOLEIMANI-BABAKAMALI M H, SOLEIMANI-BABAKAMALI R, SARLO R, et al. On the effectiveness of dimensionality reduction for unsupervised structural health monitoring anomaly detection[J]. Mechanical Systems and Signal Processing, 2023, 187: 109910.
[17]MALLAT S. Group invariant scattering[J]. Communications on Pure and Applied Mathematics, 2012, 65(10): 1331-1398.
[18]BRUNA J, MALLAT S. Invariant scattering convolution networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1872-1886.
[19]ANDEN J, MALLAT S. Deep scattering spectrum[J]. IEEE Transactions on Signal Processing, 2014, 62(16): 4114-4128.
[20]WIATOWSKI T, BOLCSKEI H. A mathematical theory of deep convolutional neural networks for feature extraction[J]. IEEE Transactions on Information Theory, 2018, 64(3): 1845-1866.
[21]RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
[22]RASTIN Z, GHODRATI AMIRI G, DARVISHAN E. Unsupervised structural damage detection technique based on a deep convolutional autoencoder[J]. Shock and Vibration, 2021, 2021(1): 6658575.
[23]常晓燕.基于深度神经网络的多维时间序列异常检测方法研究[D].上海:东华大学,2022.
CHANG Xiaoyan. Research on anomaly detection method of multidimensional time series based on deep neural network[D]. Shanghai: Donghua University, 2022.
[24]张 锐,李宏男,王东升,等.结构时程分析中强震记录选取研究综述[J].工程力学,2019,36(2):1-16.
ZHANG Rui, LI Hongnan, WANG Dongsheng, et al. Selection and scaling of real accelerograms as input to time-history analysis of structures: a state-of-the-art review[J]. Engineering Mechanics, 2019, 36(2): 1-16.
[25]乔云龙.框架结构地震反应的不确定性分析[D].哈尔滨:中国地震局工程力学研究所,2020.
QIAO Yunlong. Uncertainty analysis of seismic response of frame structure[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2020.
[26]王东超.结构地震易损性分析中地震动记录选取方法研究[D].哈尔滨:哈尔滨工业大学,2016.
WANG Dongchao. Study on selection method of ground motion records in structural seismic vulnerability analysis[D]. Harbin: Harbin Institute of Technology, 2016.
[27]Global topics report on the prestandard and commentary for the seismic rehabilitation of buildings: FEMA 357[S]. Washington DC: ASCE, 2000.
[28]杨 光.中美抗震规范RC结构层间位移角限值的对比研究[D].广州:华南理工大学,2018.
YANG Guang. Comparative study on the limit value of story drift angle of RC structures in Chinese and American seismic codes[D]. Guangzhou: South China University of Technology, 2018.
[29]吕大刚,于晓辉,王光远.基于单地震动记录IDA方法的结构倒塌分析[J].地震工程与工程振动,2009,29(6):33-39.
LÜ Dagang, YU Xiaohui, WANG Guangyuan. Structural collapse analysis based on single-record IDA method[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(6): 33-39.
[30]缪惠全.加速度基线漂移时域处理方法的对比研究[J].地震工程与工程振动,2022,42(2):135-150.
MIAO Huiquan. Comparative study of time-domain processing methods of acceleration baseline drift[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(2): 135-150.