|本期目录/Table of Contents|

[1]吴小蕙,王彦峰,纪少锋,等.新型浮动式对压蝶形弹簧-拉索减震器设计与力学性能试验[J].建筑科学与工程学报,2025,42(02):39-47.[doi:10.19815/j.jace.2023.02010]
 WU Xiaohui,WANG Yanfeng,JI Shaofeng,et al.Design and mechanical performance test of new type of floating counter pressure disc spring-stay cable shock absorber[J].Journal of Architecture and Civil Engineering,2025,42(02):39-47.[doi:10.19815/j.jace.2023.02010]
点击复制

新型浮动式对压蝶形弹簧-拉索减震器设计与力学性能试验(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
39-47
栏目:
建筑结构
出版日期:
2025-03-20

文章信息/Info

Title:
Design and mechanical performance test of new type of floating counter pressure disc spring-stay cable shock absorber
文章编号:
1673-2049(2025)02-0039-09
作者:
吴小蕙1,王彦峰1,纪少锋1,肖发平2,汪大洋2
(1. 广东电网有限责任公司电网规划研究中心,广东 广州 510080; 2. 广州大学 土木与交通工程学院,广东 广州 510006)
Author(s):
WU Xiaohui1, WANG Yanfeng1, JI Shaofeng, XIAO Faping2, WANG Dayang2
(1. Power Grid Planning Research Center of Guangdong Power Grid Co., Ltd., Guangzhou 510080, Guangdong, China; 2. School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, Guangdong, China)
关键词:
蝶形弹簧 拉索 减震器 性能试验 参数影响
Keywords:
dis spring stay cable shock absorber performance test parameter influence
分类号:
TU352
DOI:
10.19815/j.jace.2023.02010
文献标志码:
A
摘要:
提出了一种新型浮动式对压蝶形弹簧-拉索减震器,其在拉压荷载作用下均处于受压工作状态,且初始刚度可调节; 推导了减震器承载力、竖向刚度、变形能等参数的计算公式,建立了相关设计参数之间的量化关系; 此基础上设计加工了该新型减震器试件,在静态、动态荷载作用下开展了力学性能试验研究,通过与理论计算结果对比验证了减震器的合理性,揭示了减震器力学性能与加载频率、预压变形量、加载幅值之间的影响规律。结果表明:新型蝶形弹簧-拉索减震器可通过调节拉索长度、改变蝶形弹簧数量满足不同场合设计需求,试验结果与理论结果吻合良好,在设计变形量下的相对误差仅为3.82%; 相同预压变形条件下,减震器等效刚度和等效阻尼比随加载频率增大而缓慢下降; 相同加载频率下,等效刚度和等效阻尼比随预压变形量增大呈线性放大趋势,等效刚度的增幅为41.37%; 相同加载频率、预压变形量条件下,增大加载幅值有助于提升减震器的耗能能力。
Abstract:
A new type of floating counter pressure disc spring-stay cable shock absorber was proposed, which was in compression working state under tension and compression loading and the initial stiffness could be adjusted. The design formulas of bearing capacity, vertical stiffness, deformation energy and other parameters of the shock absorber were derived. The quantitative relationship between relevant design parameters was established. On the basis, the new shock absorber was designed and processed, and the mechanical properties were tested under static and dynamic loading. The rationality of the proposed shock absorber was verified by comparing with the theoretical results. The influence of loading frequency, preloading deformation and loading amplitude on the mechanical properties of the shock absorber was revealed. The results show that the new type of shock absorber can meet the design requirements of different occasions by adjusting the length of the stay cable and changing the number of disc springs. The experimental results are in good agreement with the theoretical results, and the relative error under the design deformation is only 3.82%. Under the same preloading deformation, the equivalent stiffness and equivalent damping ratio of the shock absorber decrease slowly with the increase of the loading frequency. Under the same loading frequency, the equivalent stiffness and equivalent damping ratio have a linear amplification trend with the increase of preloading deformation, and the increase of equivalent stiffness is 41.37%. Under the same loading frequency and preloading deformation, increasing the loading amplitude will help to improve the energy consumption capacity of the shock absorber.

参考文献/References:

[1] 汪大洋,周 云,王烨华,等.粘滞阻尼减震结构的研究与应用进展[J].工程抗震与加固改造,2006,28(4):22-31.
WANG Dayang, ZHOU Yun, WANG Yehua, et al. State-of-the-art of research and application on structures with viscous damper[J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(4): 22-31.
[2]付伟庆,李 茂,张春巍,等.基于被动变阻尼装置高层结构风振控制效果对比分析[J].地震工程与工程振动,2019,39(5):95-103.
FU Weiqing, LI Mao, ZHANG Chunwei, et al. Wind vibration control comparative analysis of passive variable damping device in high-rise buildings[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(5): 95-103.
[3]张尚荣,刘欣雨,李仕浩,等.基于Maxwell模型的大底盘双塔楼复合被动控制[J].工业建筑,2022,52(8):119-126.
ZHANG Shangrong, LIU Xinyu, LI Shihao, et al. Composite passive control of twin-tower structure with large chassis based on Maxwell model[J]. Industrial Construction, 2022, 52(8): 119-126.
[4]黄 昆,邹立华.底层柔性柱隔震结构半主动控制研究[J].工业建筑,2014,44(1):19-23.
HUANG Kun, ZOU Lihua. Study of isolation structures with underlying flexible column by semi-active control[J]. Industrial Construction, 2014, 44(1): 19-23.
[5]李 歆,吕西林,DYKE S.磁流变阻尼器的半主动控制及实时混合模拟试验研究[J].世界地震工程,2018,34(4):130-135.
LI Xin,LU Xilin, DYKE S. A study on semi-active control for MR damper and experimental validation using RTHS[J]. World Earthquake Engineering, 2018, 34(4): 130-135.
[6]周 云,吴从晓,张崇凌,等.芦山县人民医院门诊综合楼隔震结构分析与设计[J].建筑结构,2013,43(24):23-27.
ZHOU Yun, WU Congxiao, ZHANG Chongling, et al. Analysis and design of seismic isolation structure in outpatient building of the Lushan county people's hospital[J]. Building Structure, 2013, 43(24): 23-27.
[7]葛根旺,王军伟,晋 宇.高层隔震结构的应用现状与研究进展[J].工程抗震与加固改造,2020,42(6):53-62,69.
GE Genwang, WANG Junwei, JIN Yu. Application status and research progress of high-rise isolated structures[J]. Earthquake Resistant Engineering and Retrofitting, 2020, 42(6): 53-62, 69.
[8]王振东,孟祥玉,阳 烨,等.基础隔震结构在天津市某软弱场地应用研究[J].施工技术,2018,47(10):27-31.
WANG Zhendong, MENG Xiangyu, YANG Ye, et al. Application research of base isolated structures in Tianjin at a soft site[J]. Construction Technology, 2018, 47(10): 27-31.
[9]陶连金,安军海,葛 楠.地铁车站工程应用双向RFPS支座隔震效果研究[J].地震工程与工程振动,2016,36(1):52-58.
TAO Lianjin, AN Junhai, GE Nan. Isolation effect analysis on bidirectional RFPS bearing applied in the metro stations engineering[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(1): 52-58.
[10]谭 平,兰 李,贺 辉,等.悬吊结构体系优化设计及减震性能研究[J].建筑科学与工程学报,2021,38(1):51-60.
TAN Ping, LAN Li, HE Hui, et al. Optimal design and damping performance research of suspension structural system[J]. Journal of Architecture and Civil Engineering, 2021, 38(1): 51-60.
[11]王 亚,杨维国,聂焱森,等.两种新型滑板型文物隔震支座设计及性能研究[J].工程科学与技术,2018,50(6):56-64.
WANG Ya, YANG Weiguo, NIE Yansen, et al. Design and performance study of two new sliding relics isolation bearings[J]. Advanced Engineering Sciences, 2018, 50(6): 56-64.
[12]杜永峰,李 虎,李芳玉.PC基础隔震结构新型隔震层框架节点抗震性能分析[J].工程科学与技术,2021,53(5):32-42.
DU Yongfeng, LI Hu, LI Fangyu. Analysis on seismic behavior of a new frame joint of isolation layer in PC base-isolated structure[J]. Advanced Engineering Sciences, 2021, 53(5): 32-42.
[13]尚守平,曹 勇,崔向龙.新型三维隔震礅振动台试验与数值分析[J].建筑科学与工程学报,2018,35(2):30-37.
SHANG Shouping, CAO Yong, CUI Xianglong. New three-dimension isolation pier vertical vibration table test and numerical analysis[J]. Journal of Architecture and Civil Engineering, 2018, 35(2): 30-37.
[14]MA L C, SHI Q X, WANG B, et al. Research on design and numerical simulation of self-centering prefabricated RC beam-column joint with pre-pressed disc spring devices[J]. Soil Dynamics and Earthquake Engineering, 2023, 166: 107762.
[15]CHOU C C,CHUNG P T. Development of cross-anchored dual-core self-centering braces for seismic resistance[J]. Journal of Constructional Steel Research, 2014, 101: 19-32.
[16]XU L H, FAN X W, LI Z X. Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace[J]. Engineering Structures, 2016, 127: 49-61.
[17]NOURELDIN M, MEMON S A, GHARAGOZ M, et al. Performance-based seismic retrofit of RC structures using concentric braced frames equipped with friction dampers and disc springs[J]. Engineering Structures, 2021, 243: 112555.
[18]DONG H H, DU X L, HAN Q,et al. Performance of an innovative self-centering buckling restrained brace for mitigating seismic responses of bridge structures with double-column piers[J]. Engineering Structures, 2017, 148: 47-62.
[19]FAN X W, XU L H, LI Z X. Seismic performance evaluation of steel frames with pre-pressed spring self-centering braces[J]. Journal of Constructional Steel Research, 2019, 162: 105761.
[20]CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound Vibration, 2007, 301(3/4/5): 678-689.
[21]KOVACIC I, BRENNAN M J, WATERS T P. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic[J]. Journal of Sound and Vibration, 2008, 315(3): 700-711.
[22]ALMEN J O, LASZLO A. The uniform-section disk spring[J]. Journal of Fluids Engineering, 1936, 58(4): 305-314.
[23]肖发平.新型三维隔震装置设计及其在古木结构中应用研究[D].广州:广州大学,2018.
XIAO Faping. Design of new type three-dimensional seismic isolation device and application study in ancient timber structure[D]. Guangzhou: Guangzhou University, 2018.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-02-05
基金项目:国家自然科学基金项目(52178467); 南方电网公司科技项目(037700KK52220039); 广州市教育局项目(202235058,202102010459)
作者简介:吴小蕙(1974-),女,高级工程师,E-mail:1175088580@qq.com。
通信作者:肖发平(1966-),男,高级工程师,E-mail:93882469@qq.com。
Author resumes: WU Xiaohui(1974-), female, senior engineer, E-mail: 1175088580@qq.com; XIAO Faping(1966-), male, senior engineer, Email: 93882469@qq.com.
更新日期/Last Update: 2025-03-20