|本期目录/Table of Contents|

[1]黎福禄,马志元,张永亮,等.高寒地区预制混凝土箱涵水化热温度效应与开裂风险研究[J].建筑科学与工程学报,2025,42(02):153-164.[doi:10.19815/j.jace.2023.06055]
 LI Fulu,MA Zhiyuan,ZHANG Yongliang,et al.Study on hydration heat temperature effect and cracking risk of precast concrete box culvert in alpine region[J].Journal of Architecture and Civil Engineering,2025,42(02):153-164.[doi:10.19815/j.jace.2023.06055]
点击复制

高寒地区预制混凝土箱涵水化热温度效应与开裂风险研究(PDF)
分享到:

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

卷:
42卷
期数:
2025年02期
页码:
153-164
栏目:
桥隧工程
出版日期:
2025-03-20

文章信息/Info

Title:
Study on hydration heat temperature effect and cracking risk of precast concrete box culvert in alpine region
文章编号:
1673-2049(2025)02-0153-12
作者:
黎福禄1,马志元2,张永亮3,钱松3,刘江2
(1. 青海省交控建设工程集团有限公司,青海 西宁 810002; 2. 长安大学 公路学院,陕西 西安 710064; 3. 中联西北工程设计研究院有限公司,陕西 西安 710076)
Author(s):
LI Fulu1, MA Zhiyuan2, ZHANG Yongliang3, QIAN Song3, LIU Jiang2
(1. Qinghai Traffic Control Construction Engineering Group Co., Ltd., Xining 810002, Qinghai, China; 2. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 3. China United Northwest Institute for Engineering Design & Research Co., Ltd., Xi'an 710076, Shaanxi, China.)
关键词:
水化热 混凝土箱涵 高寒地区 温度效应 开裂风险
Keywords:
hydration heat concrete box culvert alpine region temperature effect cracking risk
分类号:
U448.21
DOI:
10.19815/j.jace.2023.06055
文献标志码:
A
摘要:
为研究高寒地区大尺寸预制混凝土箱涵水化热温度场分布规律,降低箱涵预制期间早龄期开裂风险,对青海地区预制混凝土箱涵开展水化热温度有限元模拟计算,分析了混凝土箱涵水化热温度时程变化及温度分布特点。基于考虑混凝土龄期增长的温度应力计算方法,评估了水化放热期间的混凝土箱涵开裂风险。通过参数分析得到了不同因素对混凝土箱涵水化热温度作用的影响规律。结果表明:混凝土箱涵受水化作用影响的温度时程变化过程可以分为水化升温、水化降温及环境影响阶段; 截面内水化热温度呈现出以形心为中点的放射状分布; 混凝土箱涵顶面及底面应力水平较高,其中倒角顶面内侧位置应力最大,为1.71 MPa; 混凝土箱涵倒角位置由于框架效应产生的次应力最显著,故开裂风险最高; 材料属性、结构参数、环境作用对混凝土箱涵预制期间水化热温度作用均有显著的影响,其中材料属性的影响最为显著; 通过降低水泥水化放热量,减少混凝土水泥掺量,减小箱涵尺寸,减小初始温度和降低顶面对流换热系数等参数可以有效降低混凝土箱涵早期开裂风险; 可以通过调整材料属性、结构参数及环境作用来优化混凝土箱涵设计及施工方案,以降低早期开裂风险。
Abstract:
In order to study the distribution law of hydration heat temperature field of large size precast concrete box culvert in alpine area, and reduce early age cracking risk during precast of box culvert, the finite element simulation calculation of hydration heat temperature of precast concrete box culvert in Qinghai area was carried out, and the time history change and temperature distribution characteristics of hydration heat temperature of concrete box culvert were analyzed. Based on the temperature stress calculation method considering the growth of concrete age, the cracking risk of concrete box culverts during the hydration heat release period was evaluated. The effects of different factors on the effect of hydration heat temperature on concrete box culverts were obtained by parametric analysis. The results show that the temperature time history change process of concrete box culverts affected by hydration can be divided into hydration heating stage, hydration cooling stage and environmental influence stage. The distribution of hydration heat temperature shows a radial distribution with the shape center as the midpoint. The stress levels on the top and bottom surfaces of concrete box culvert are relatively high, with the highest stress at the inner side of the chamfer top surface, which is 1.71 MPa. The chamfer position of the concrete box culvert has the highest cracking risk due to the significant secondary stress generated by the frame effect. The material properties, structural parameters, and environmental effects have a significant impact on the hydration heat temperature during precast of concrete box culverts, with the most significant effect of material properties. By reducing the cement hydration heat release, reducing the concrete cement mixture, reducing the size of box culvert, reducing the initial temperature, reducing the top surface flow heat transfer coefficient and other parameters can effectively reduce the risk of early cracking of concrete box girders. The design and construction plan of concrete box girder can be optimized by adjusting material properties, structural parameters and environmental effects to reduce the risk of early cracking.

参考文献/References:

[1] 宫亚峰,逄蕴泽,王 博,等.基于吉林省路况的新型预制装配式箱涵结构的力学性能[J].吉林大学学报(工学版),2021,51(3):917-924.
GONG Yafeng, PANG Yunze, WANG Bo, et al. Mechanical properties of new prefabricated box culvert structure based on road conditions in Jilin province[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 917-924.
[2]蒋恩华,朱俊虎.预制装配式箱涵关键工序施工技术[J].公路,2020,65(6):22-26.
JIANG Enhua, ZHU Junhu. Application of construction technology in key process of prefabricated box culvert in high and seasonal freezing area[J]. Highway, 2020, 65(6): 22-26.
[3]董 杰.预制装配式箱涵设计计算与实验研究[D].武汉:武汉理工大学,2017.
DONG Jie. Design calculation and experimental study of prefabricated box culvert[D]. Wuhan: Wuhan University of Technology, 2017.
[4]宫亚峰,宋加祥,毕海鹏,等.装配式箱涵结构缩尺模型静载试验及有限元分析[J].吉林大学学报(工学版),2020,50(5):1728-1738.
GONG Yafeng, SONG Jiaxiang, BI Haipeng, et al. Static test and finite element analysis of scale model of fabricated box culvert[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1728-1738.
[5]王 博.预制装配式箱涵力学性能研究与结构变形预测[D].长春:吉林大学,2020.
WANG Bo. Research on mechanical properties of prefabricated box culvert and prediction of structural deformation[D]. Changchun: Jilin University, 2020.
[6]DO T A, VERDUGO D, MANG T A, et al. Effect of volume-to-surface area ratio and heat of hydration on early-age thermal behavior of precast concrete segmental box girders[J]. Case Studies in Thermal Engineering, 2021, 28: 101448.
[7]陈志坚,顾 斌.大型混凝土箱梁水化热温度场的数值模拟[J].公路交通科技,2012,29(3):64-69.
CHEN Zhijian, GU Bin. Numerical simulation on hydration heat temperature field of large-size concrete box girder[J]. Journal of Highway and Transportation Research and Development, 2012, 29(3): 64-69.
[8]陈黎阳.早龄期混凝土箱梁温度场分析[J].公路交通科技,2018,35(10):50-55.
CHEN Liyang. Analysis on temperature field of early age concrete box girder[J]. Journal of Highway and Transportation Research and Development, 2018, 35(10): 50-55.
[9]ZENG Y, ZENG Y T, JIANG D, et al. Curing parameters' influences of early-age temperature field in concrete continuous rigid frame bridge[J]. Journal of Cleaner Production, 2021, 313: 127571.
[10]ZENG Y, ZENG Y T, JIANG D, et al. Study on early-age thermal field of single-cell box girder concrete cured with electric heating furnaces[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(3): 2701-2714.
[11]童 智,张 阳.大跨PC连续刚构桥0#块混凝土水化热分析[J].公路工程,2017,42(4):63-68,75.
TONG Zhi, ZHANG Yang. Hydration heat analysis of 0# block concrete for long span PC continuous rigid frame bridge[J]. Highway Engineering, 2017, 42(4): 63-68, 75.
[12]MI G. Analysis of cracking caused by hydration heat in bridge seals utilizing innovative massive concrete mixtures[J]. Structures Congress, 2018, 29(4): 167-175.
[13]CARL B. Transient thermal behavior of composite bridges[J]. Journal of Structural Engineering, 1983, 109(10): 2325-2339.
[14]李可欣,宁晓骏.连续刚构桥零号块温度应力模拟分析[J].低温建筑技术,2016,38(7):46-49.
LI Kexin, NING Xiaojun. Temperature stress simulation analysis of continuous rigid frame bridge with zero block hydration heat[J]. Low Temperature Architecture Technology, 2016, 38(7): 46-49.
[15]汪建群,方 志,刘 杰.大跨预应力混凝土箱梁水化热测试与分析[J].桥梁建设,2016,46(5):29-34.
WANG Jianqun, FANG Zhi, LIU Jie. Measurement and analysis of hydration heat of long span PC box girders[J]. Bridge Construction, 2016, 46(5): 29-34.
[16]DO T A, MANG T A, NGUYEN T H, et al. Assessment of temperature evolution and early-age thermal cracking risk in segmental high-strength concrete box girder diaphragms[J]. KSCE Journal of Civil Engineering, 2022, 26(1): 166-182.
[17]FOURIER J B J. The analytical theory of heat[M]. New York: Dover Publications,1955.
[18]CRISTOFARI C, NOTTON G, LOUCHE A. Study of the thermal behaviour of a production unit of concrete structural components[J]. Applied Thermal Engineering, 2004, 24(7): 1087-1101.
[19]章 征,王 凯,李毓龙,等.混凝土桥墩施工期水化热及表面抗裂影响因素研究[J].桥梁建设,2015,45(2):65-70.
ZHANG Zheng, WANG Kai, LI Yulong, et al. Study of influential factors of hydration heat and surface cracking resistance of concrete pier in construction[J]. Bridge Construction, 2015, 45(2): 65-70.
[20]朱伯芳.大体积混凝土温度应力与温度控制[M].2版.北京:中国水利水电出版社,2012.
ZHU Bofang. Thermal stress and temperature control of mass concrete[M]. 2nd ed. Beijing: China Water & Power Press, 2012.
[21]杨世铭,陶文铨.传热学[M].4版.北京:高等教育出版社,2006.
YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
[22]ZHANG Z J, LIU Y J, LIU J, et al. Thermo-mechanical behavior simulation and cracking risk evaluation on steel-concrete composite girders during hydration process[J]. Structures, 2021, 33: 3912-3928.
[23]公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362—2018[S].北京:人民交通出版社,2018.
Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts: JTG 3362—2018[S]. Beijing: China Communications Press, 2018.
[24]预制混凝土箱涵:JC/T 2456—2018[S].北京:中国建设科技出版社,2018.
Precast concrete box culvert: JC/T 2456—2018[S]. Beijing: China Construction Science and Technology Press, 2018.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-12-09
基金项目:青海省重点研发与转化计划项目(2021-SF-166)
作者简介:黎福禄(1981-),男,高级工程师,E-mail:2510618272@qq.com。
通信作者:刘 江(1991-),男,工学博士,副教授,E-mail:liu-jiang@chd.edu.cn。
Author resumes: LI Fulu(1981-), male, senior engineer, E-mail: 2510618272@qq.com; LIU Jiang(1991-), male, PhD, associate professor, E-mail: liu-jiang@chd.edu.cn.
更新日期/Last Update: 2025-03-20